Древние платформы земной коры. Основные тектонические элементы земной коры.
История современного города Афины.
Древние Афины
История современных Афин

§4. Тектоническое строение земной коры. Древние платформы земной коры


21. Строение земной коры континентов.

Континентальная кора имеет трёхслойное строение:

1) Осадочный слой образован в основном осадочными горными породами. Здесь преобладают глины и глинистые сланцы, широко представлены песчаные, карбонатные и вулканогенные породы. В осадочном слое встречаются залежи таких полезных ископаемых, как каменный уголь, газ, нефть. Все они органического происхождения.

2) «Гранитный» слой состоит из метаморфических и магматических пород, близких по своим свойствам к граниту. Наиболее распространены здесь гнейсы, граниты, кристаллические сланцы и др. Встречается гранитный слой не везде, но на континентах, где он хорошо выражен, его максимальная мощность может достигать нескольких десятков километров.

3) «Базальтовый» слой образован горными породами, близкими к базальтам. Это метаморфизованные магматические породы, более плотные по сравнению с породами «гранитного» слоя.

22. Строение и развитие подвижных поясов.

Геосинклиналь - подвижная зона высокой активности, значительной расчлененности, характеризующаяся на ранних этапах своего развития преобладанием интенсивных погружений, а на заключительных - интенсивных поднятий, сопровождаемых значительными складчато - надвиговыми деформациями и магматизмом.

Подвижные геосинклинальные пояса являются чрезвычайно важным структурным элементом земной коры. Они обычно располагаются в зоне перехода от континента к океану и в процессе своей эволюции формируют континентальную кору. В развитии подвижных поясов, областей и систем выделяются два основных этапа: геосинклинальный и орогенный.

В первом из них различаются две главные стадии: раннегеосинклинальная и позднегеосинклинальная.

Раннегеосинклинальная стадия характеризуется процессами растяжения, расширения океанского дна путем спрединга и одновременно - сжатия в краевых зонах

Позднегеосинклинальная стадия начинается в момент усложнения внутренней структуры подвижного пояса, которое обусловлено процессами сжатия, проявляющимися все сильнее в связи с начинающимися закрытием океанского бассейна и встречным движением литосферных плит.

Орогенный этап сменяет позднегеосинклинальную стадию. Орогенный этап развития подвижных поясов состоит в том, что вначале перед фронтом растущих поднятий возникают передовые прогибы, в которых накапливаются мощные толщи тонкообломочных пород с угленосными и соленосными толщами — тонкие молассы.

23. Платформы и этапы их развития.

Платформа, в геологии - одна из главных глубинных структур земной коры, характеризующаяся малой интенсивностью тектонических движений, магматической деятельности и плоским рельефом. Это наиболее устойчивые и спокойные области континентов.

В строении платформ различают два структурных этажа:

1) Фундамент. Нижний этаж сложен метаморфическими и магматическими породами, смятыми в складки, разбитыми многочисленными разломами.

2) Чехол. Верхний структурный этаж, сложен полого залегающими неметаморфизованными слоистыми толщами - осадочными, морскими и континентальными отложениями

По возрасту, строению и истории развития континентальные платформы подразделяются на две группы:

1) Древние платформы занимают около 40 % площади континентов

2) Молодые платформы занимают значительно меньшую площадь континентов (около 5 %) и располагаются либо по периферии древних платформ, либо между ними.

Стадии развития платформ.

1) Начальная. Стадия кратонизации, характеризуется преобладанием поднятий и довольно сильным заключительным основным магматизмом.

2) Авлакогенная стадия, которая постепенно вытекает из предыдущей. Постепенно авлакогены (глубокий и узкий грабен в фундаменте древней платформы, перекрытый платформенным чехлом. Представляет собой древний рифт, заполненный осадками.) перерастают во впадины, а потом в синеклизы. Синеклизы разрастаясь, покрывают осадочным чехлом всю платформу, и наступает ее плитная стадия развития.

3) Плитная стадия. На древних платформах охватывает весь фанерозой, а на молодых начинается с юрского периода мезозойской эры.

4) Стадия активизации. Эпиплатформенные орогены (гора, горноскладчатое сооружение, возникшее наместе геосинклинали)

studfiles.net

§4. Тектоническое строение земной коры

Основные вопросы. 1. Каковы основные структуры земной коры? 2. В чем проявляются закономерности в размещении форм рельефа на Земле?

Платформы. В пределах материков выделяют крупные структуры, которые отчетливо выражены в современном рельефе – платформы и складчатые области. Платформа (от французского "плоская форма") – крупная, относительно устойчивая, выровненная глыба земной коры. Она, как правило, состоит из двух этажей: нижнего кристаллического (либо складчатого основания) – фундамента и верхнего слоя осадочного чехла. Мощность чехла достигает около 5-6 км и более. Различают материковые и океанические платформы

Древние платформы имеют фундамент, сложенный кристаллическими породами и составляют ядра материков. Они являются наиболее устойчивыми участками земной коры. Молодые платформы имеют фундамент образованный не только кристаллическими, но и смятыми в складки более молодыми породами. Существует 10 основных древних платформ: Восточно - Европейская, Северо-Американская, Южно - Американская, Африкано - Аравийская, Индийская, Австралийская, Южно – Китайская, Сибирская, Китайско-Корейская, Антарктическая. (Изучите карту «Строение земной коры»). Существует два принципиально разных вида земной коры: материковый или океанический. В зависимости от этого образуются равнины суши или дна океана.

Плиты и щиты. Плита – крупная часть платформы, покрытая осадочным чехлом. Плитам соответствуют равнины. Щит – обширное поднятие и выход кристаллического фундамента платформы на поверхность. Щиты – это часть древних платформ, которые в течение длительного геологического времени медленно поднимались, подвергаясь действию разрушения.

Щитам соответствуют обычно возвышенные равнины или невысокие горы: Балтийский, Анадырский щиты в Евразии, Канадский в Северной Америке. В районах щитов залегают богатые месторождения золота, марганцевых, урановых и железных руд, алмазов. С платформенным чехлом в пределах плит связаны месторождения нефти, каменного угля, калийных солей.

Складчатые области в отличие от платформ – тектонические подвижные обширные участки земной коры в пределах складчатых поясов (древних либо молодых), вытянутые на сотни и тысячи километров. Складчатость – процесс образования складок горных пород, совпадающий с активностью тектонических процессов.

Складчатые области и горы образуются обычно в местах столкновения литосферных плит. Процесс формирования складчатых областей начинается с интенсивного прогибания земной коры. Оно сопровождается накоплением мощных толщ пород. Затем происходит образование складок и разрывов слоев земной коры при общем поднятии. Завершается процесс образованием мощных складчатых областей и более протяжных складчатых поясов. В рельефе они выражены горами разного возраста. Горы постепенно в течение длительного времени разрушаются.

Основными структурами земной коры являются платформы и складчатые области (пояса). В размещении форм рельефа существуют определенные закономерности. Равнины, как правило, соответствуют платформам, а горы - складчатым областям.

1. Что такое платформа? 2. Покажите на карте литосферные плиты и платформы. Что общего вы видите в их названии и расположении?*3.В чем отличие океанических и континентальных платформ, рифтов, складчатых областей и поясов? *4. Какие формы рельефа соответствуют плитам и щитам? Объясните причины. **5. Сделайте сравнительный анализ карты «Строение земной коры» и «Физическая карта мира». Заполните таблицу, состоящую из граф: древние платформы и подвижные участки земной коры, соответствующие им полезные ископаемые, основные формы их рельефа, Установите закономерности размещения форм рельефа на поверхности Земли.

studfiles.net

§4. Тектоническое строение земной коры

Основные вопросы. 1. Каковы основные структуры земной коры? 2. В чем проявляются закономерности в размещении форм рельефа на Земле?

Платформы. В пределах материков выделяют крупные структуры, которые отчетливо выражены в современном рельефе – платформы и складчатые области. Платформа (от французского "плоская форма") – крупная, относительно устойчивая, выровненная глыба земной коры. Она, как правило, состоит из двух ярусов: нижнего кристаллического фундамента (либо складчатого основания) и верхнего слоя осадочного чехла. Мощность чехла достигает около 5-6 км и более. Различают также материковые и океанические платформы

Древние платформы имеют фундамент сложенный кристаллическими породами и составляют ядра материков. Они являются наиболее устойчивыми участками земной коры. Молодые платформы имеют фундамент образованный не только кристаллическими, но и смятыми в складки породами. Существует 10 основных древних платформ: Восточно - Европейская, Северо-Американская, Южно - Американская, Африкано - Аравийская, Индийская, Австралийская, Южно – Китайская, Сибирская, Китайско-Корейская, Антарктическая. (Изучите карту «Строение земной коры»). Существует два принципиально разных вида земной коры: материковый или океанический. В зависимости от этого образуются равнины суши или дна океана.

Плиты и щиты. Плита – крупная часть платформы, покрытая осадочным чехлом с глубиной залегания фундамента, достигающей 3-5 и более км. Плитам соответствуют равнины. Щит – обширное поднятие и выход кристаллического фундамента платформы на поверхность. Щиты – это часть древних платформ, которые в течение длительного геологического времени медленно поднимались, подвергаясь действию разрушения.

Щитам соответствуют обычно возвышенные равнины или невысокие горы: Балтийский, Анадырский щиты в Евразии, Канадский в Северной Америке, Бразильский и Гвианский в Южной Америке. В районах щитов залегают богатые месторождения золота, марганцевых, урановых и железных руд, алмазов. С платформенным чехлом в пределах щита связаны месторождения нефти, каменного угля, калийных солей.

Складчатые области в отличие от платформ – тектонические подвижные обширные участки земной коры в пределах складчатых поясов (древних либо молодых), вытянутые на сотни и тысячи километров. Складчатость – процесс образования складок горных пород, совпадающий с активностью тектонических процессов.

Складчатые области и горы образуются обычно в местах столкновения литосферных плит. Процесс формирования складчатых областей начинается с интенсивного прогибания земной коры. Оно сопровождается накоплением мощных толщ пород. Затем происходит образование складок и разрывов слоев земной коры при общем поднятии. Завершается процесс образованием мощных складчатых областей и более протяжных складчатых поясов. В рельефе они выражены горами разного возраста. Горы постепенно в течение длительного времени разрушаются.

Основными структурами земной коры являются платформы и складчатые области (пояса). В размещении форм рельефа существуют определенные закономерности. Равнины, как правило, соответствуют платформам, а горы - складчатым областям.

1. Что такое платформа? 2. Покажите на карте литосферные плиты и платформы. Что общего вы видите в их названии и расположении?*3.В чем отличие океанических и континентальных платформ, рифтов, складчатых областей и поясов? *4. Какие формы рельефа соответствуют плитам и щитам? Объясните причины. **5. Сделайте сравнительный анализ карты «Строение земной коры» и «Физическая карта мира». Заполните таблицу, состоящую из граф: древние платформы и подвижные участки земной коры, соответствующие им полезные ископаемые, основные формы их рельефа, Установите закономерности размещения форм рельефа на поверхности Земли.

studfiles.net

Структуры земной коры и литосферы

 

При рассмотрении деформаций горных пород, которые являются следствием (результатом) движений земной коры и литосферы, видно, что Земля находится в беспрерывном развитии. Древние движения и связанные с ними другие геологические процессы сформировали определенное строение земной коры, т.е. геологическиеструктурыилитектонику земной коры. Современные и частично новейшие движения продолжают изменять древние структуры, создавать современные структуры, которые нередко как бы накладываются на «старые» структуры.

Термин тектоника с латинского языка обозначает «строительство». Под термином «тектоника» понимают, с одной стороны, «строение какого-либо участка земной коры, определяющееся совокупностью тектонических нарушений и историей их развития», а с другой стороны, «учение о строении земной коры, геологических структурах и закономерностях их расположения и развития. В последнем случае синоним термина геотектоника».

В.П. Гаврилов дает наиболее оптимальное понятие: «Геологическиеструктуры – участкиземнойкорыилитосферы, которые отличаются от соседних участков определенными сочетаниями состава (название и генезис), возраста, условий (форм) залегания и геофизических параметров слагающих их горных пород». Ис- ходя из этого определения, геологической структурой можно называть и пласт горной породы, и разлом, и более крупные структуры земной коры, состоящие из системы элементарных структур, т.е. можно выделять геологические структуры разных уровней или рангов: глобальные, региональные, локальные и местные. На практике геологи-съемщики, выполняющие геологическое картирование, выявляют местные и локальные структуры.

Наиболее крупными и глобальными структурами земной коры являются континентыили участки с континентальным типом земной коры и впадиныокеановили участки с океаническим типом земной коры, а также области их сочленения, отличающиеся зачастую активными современными движениями, которые изменяют и усложняют древние структуры (рис. 38, 39). Строители осваивают, прежде всего, участки континентов. В основе всех континентов лежат древние (дорифейские) платформы, которые окружены или пересекаются горно-складчатымипоясамииобластями.

Платформаминазывают крупные блоки земной коры, обладающие двухъярусным (этажным) строением. Нижний структурный этаж, сложенный дислоцированными комплексами осадочных, магматических и метаморфических пород, называют складчатым (кристаллическим) фундаментом (цоколем, основанием), который был образован древнейшими дислокационными движениями.

 

 

Верхний этаж, сложенный почти горизонтально залегающими осадочными породами значительной мощности – осадочным (платформенным) чехлом. Он был образован за счет более молодых вертикальных движений – опусканий и поднятий отдельных блоков фундамента, которые неоднократно были залиты морем, в силу чего оказались покрытыми чередующимися слоями осадочных морских и континентальных отложений.

В течение длительного времени формирования чехла блоки земной коры в пределах платформ отличались слабой сейсмичностью и отсутствием или редким проявлением вулканизма, поэтому они по характеру тектонического режима от- носятся к относительно устойчивым, жестким и малоподвижным структурам континентальной земной коры. Из-за мощного почти горизонтального чехла платформам свойственны выровненные формы рельефа и характерны медленные современные вертикальные движения. В зависимости от возраста складчатого фундамента различают древние и молодые платформы.

Древниеплатформы (кратоны) имеют докембрийский, по некоторым авторам даже дорифейский, фундамент, перекрытый осадочными породами (отложениями) верхнепротерозойской (рифейской), палеозойской, мезозойской и кайнозойской систем.

 

 

 
 

 

В течение более 1 млрд лет блоки древних платформ были устойчивыми и относительно малоподвижными с преобладанием вертикальных движений. Древние платформы (Восточно-Европейская, Сибирская, Китайско-Корейская, Южно- Китайская, Таримская, Индостанская, Австралийская, Африканская, Северо- и Южно-Американские, Восточно-Бразильская и Антарктическая) лежат в основе всех континентов (рис. 40). Главными структурами древних платформ являются щиты и плиты. Щитыпредставляют собой положительные (относительно при- поднятые), как правило, изометричные в плане, участки платформ, в которых на поверхность выходит дорифейский фундамент, а осадочный чехол практически отсутствует или имеет ничтожную мощность. В фундаменте выделяют раннеархейские (беломорские) блоки гранитогнейсовых куполов, позднеархейско- раннепротерозойские (карельские) складчатые зоны зеленокаменных поясов из метаморфизованных зеленокаменно измененных вулканитов основного состава и осадочных пород, в т.ч. железистых кварцитов.

Большая площадь фундаментов перекрыта осадочным чехлом и называетсяплитой. Плитыпо сравнению со щитами представляют собой опущенные участки платформы. В зависимости от глубины залегания фундамента и соответственно мощности осадочного чехла выделяются антеклизы и синеклизы, перикратонные прогибы и авлакогены и другие более мелкие структурные элементы.

Антеклизы– участки плит, в пределах которых глубина залегания фундамента не превышает 1…2 км, а на отдельных участках фундамент может выходить на земную поверхность. Маломощный осадочный чехол имеет антиклинальную форму изгиба поверхностей (Воронежская антеклиза).

Синеклизы представляют собой крупные пологие изометричные или слегка вытянутые структуры в пределах плит, ограниченные смежными щитами, антеклизами или др. Глубина залегания фундамента и соответственно мощность осадочных пород более 3…5 км. Крылья имеют синклинальную форму изгиба поверхностей (Московская, Тунгусская). Склоны антеклиз и синеклиз обычно сложены валами (пологими поднятиями) и флексурами (изгибами складок, отражающими глубинные разломы – Жигулевская флексура).

Наибольшая глубина залегания (до 10…12 км) фундамента наблюдается в авлакогенах. Авлакогены представляют собой относительно протяженные (до нескольких сотен километров) и узкие прогибы, ограниченные разломами и заполненные мощными толщами не только осадочных, но вулканических пород (базальтами), что сближает их по строению со структурами рифтового типа. Многие авлакогены переродились в синеклизы. Среди более мелких структур на плитах выделяются прогибы и впадины, своды и валы, соляные купола.

Молодыеплатформы имеют молодой архейско-протерозойско-палеозойский или даже палеозойско-мезозойский возраст пород фундамента и соответственно еще моложе возраст пород чехла – мезо-кайнозойский. Самым ярким примером молодой платформы является Западно-Сибирская плита, осадочный чехол кото- рой богат залежами нефти и газа. В отличие от древних молодые платформы не имеют щитов, а окружены горно-складчатыми поясами и областями.

Складчатыепояса заполняют промежутки между древними платформами или отделяют их от впадин океанов. В их пределах горные породы разного происхождения интенсивно смяты в складки, пронизаны большим количеством разломов и интрузивных тел, что указывает на формирование их в условиях сжатия и пододвигания литосферных плит. К крупнейшим складчатым поясам относятся Урало- Монгольский (Охотский), Северо-Атлантический, Арктический, Тихоокеанский (часто подразделяется на Восточно- и Западно-Тихоокеанский) и Средиземноморский. Все они зародились в конце протерозоя. Первые три пояса завершили свое развитие к концу палеозоя, т.е. они как складчатые пояса существуют уже более 250…260 млн. лет. В течение этого времени в их пределах преобладают уже не дислокационные горизонтальные, а вертикальные относительно медленные движения. Два последних пояса – Тихоокеанский и Средиземноморский, продолжают свое развитие, выражающиеся в проявлении землетрясений и вулканизма.

В складчатых поясах выделяют складчатые области, которые сформировались на месте резко дифференцированных и подвижных областей геологического прошлого, т.е. там, где были, вероятно, и процессы спрединга, и субдукции или др. тектонические движения, характерные для современных областей. Складчатые области различают между собой по времени образования составляющих их структур и по возрасту горных пород, которые смяты в складки, пронизаны разломами и интрузиями. На обзорных картах строения земной коры выделяются обычно следующие области: байкальской складчатости, образовавшейся в позднем протерозое; каледонской – в раннем палеозое; герцинской или варисцийской – на границе карбона и перми; киммерийской или ларамийской – в поздней юры и мела; альпийской – в конце палеогена, кайнозойской – в середине миоцена. Отдельные участки подвижных поясов, в которых формирование основных складчатых структур продолжается (сейсмофокальные зоны глубокофокусных землетрясений), рассматриваются многими учеными как современные геосинклинальныеобласти. Таким образом, понятия геосинклиналь иконвергентные границы, особенно зоны Вадати-Заварицкого-Беньофа, применяются для одних и тех же структур (участков) земной коры. Только понятие геосинклиналь используется, как правило, для древних складчатых областей и поясов сторонниками геосинклинальной теории (фиксизма), согласно которой в образовании складчатых областей ведущую роль играли вертикальные движения. Второе понятие применяется сторонниками теории движения литосферных плит (мобилизма) для конвергентных границ, на которых преобладают горизонтальные движения в условиях сжатия, приводящие к образованию разломов, складок и как следствие поднятию земной коры, т.е. современных развивающихся областей складчатости.

Геосинклиналяминазываются наиболее активные подвижные участки земной коры. Они располагаются между платформами и представляют собой как бы их подвижные сочленения. Для геосинклиналей характерны разнообразные по вели- чине тектонические движения, землетрясения, вулканизм, складкообразование. В зоне геосинклиналей происходит интенсивное накопление мощных толщ осадочных пород. К ним приурочено около 72 % всей массы осадочных пород, а на платформах только 28 %. Развитие геосинклинали завершается образование складчатостей, т.е. областей с интенсивным смятием горных пород в складки, активными разрывными дислокациями и, как следствие, восходящими вертикальными тектоническими движениями. Этот процесс называется орогенезом (горообразованием) и ведет к расчленению рельефа. Так возникают горные хребты и межгорные впадины – горные страны.

В пределах горно-складчатых областей выделяются антиклинории, синклинории, краевые прогибы и другие более мелкие структуры. Отличительной особенностью строения антиклинориев является то, что в их ядрах (осевых частях) залегают наиболее древние или интрузивные (глубинные) магматические горные породы, которые к периферии структур сменяются более «молодыми» породами. Осевые части синклинориевсложены более «молодыми» горными породами. На- пример, в ядрах антиклинориев Уральской горно-складчатой герцинской (палеозойской) области вскрываются архейско-протерозойские метаморфические породы или интрузивные породы. В частности, ядра Восточно-Уральского антиклинория сложены гранитоидами, поэтому его называют иногда антиклинорием гранитных интрузий. В синклинориях данной области залегают, как правило, девонско-каменноугольные осадочно-вулканогенные породы в разной степени мета- морфизованные; в краевомпрогибе – мощные толщи самых «молодых» палеозойских – пермских, горных пород. В конце палеозоя (примерно 250…260 млн лет тому назад), когда формировалась Уральская горно-складчатая область, на месте антиклинориев существовали высокие хребты, а на месте синклинориев и краевого прогиба – впадины-прогибы. В горах, где горные породы обнажаются на земной поверхности, активизируются экзогенные процессы: выветривание, денудация и эрозия. Речные потоки разрезают и распиливают поднимающуюся область на горные хребты и долины. Начинается новый геологический этап – платформенный.

Таким образом, структурные элементы земной коры – геологические структуры, разных уровней (рангов) имеют определенное развитие и особенности строения, выраженные в сочетании различных горных пород, условиях (формах) их залегания, возрасте, а также влияют на формы земной поверхности – рельеф. В связи с этим, инженеры-строители при подготовке различных проектных материалов и при строительстве, эксплуатации сооружений, особенно дорог, трубопроводов и других магистралей должны учитывать особенности движения и строение земной коры и литосферы.

 

 

Похожие статьи:

poznayka.org

Основные тектонические элементы земной коры.

ТОП 10:

На материках и в океанах выделяются древние и устойчивые блоки и, с другой стороны, молодые и геологически подвижные.

На материках выделяют:

· древние платформы (кратоны),

· подвижные пояса.

Платформы имеют двухъярусное строение. Фундамент имеет возраст AR – PR1

и покрыт чехлом (PR2 – KZ) мощностью до 5 км (в узких зонах - авлакогенах), в редких случаях – до 20 км (в синеклизах). Выступы фундамента называют антеклизами,а еговыходына поверхность именуют щитами.В Евразии 6 кратонов:

· Восточно-Европейский,

· Сибирский,

· Китайско-Корейский,

· Южно-Китайский,

· Индостанский,

· Аравийский.

На остальных континентах – по одному одноимённому.

Подвижные пояса,с возрастом пород моложеPR2:

· Североатлантический,

· Урало-Монгольский,

· Средиземноморский,

· Тихоокеанский.

Эти зоны испытывали погружение с мощным осдконакоплением, в эвгеосинклиналях – с вулканизмом, в миогеосинклиналях (окраинных морях) – без него. Современные геосинклинали – это глубоководные желоба. Узкие поднятия около прогибов – геоантиклинали (островные дуги),а их широкие устойчивые аналоги с континентальной корой древнего типа – срединные массивы. После инверсии растяжение сменяется во время складчатости сжатием и начинается горообразовательный процесс. Около древних платформ возникают краевые прогибы,весьма перспективные в отношении нефтегазоносности. Геосинклинальные зоны превращаются в эпигеосинклинали – зоны завершённой складчатости: это либо молодые плитыс достаточно мощным чехлом(PZ - KZ), либо молодые платформы со слабым воздыманием. Впоследствии на обоих возможны активизации и рифтообразование (Восточно-Африканский рифт, Байкал).Демонстраци.я

В океанах выделяют:

· срединно – океанические рифтовые пояса,

· океанические плиты.

Срединно – океанические рифтовые пояса – зоны спрединга, раздвига, с молодой (MZ - KZ) корой, гидротермами, землетрясениями, магнитными аномалиями. Трансформные разломы располагаются поперёк рифтов, по ним отмечается движение.

Океанические плиты (13 шт.) с мощностью осадков менее 1 км имеют в основании базальты не старше MZ, возраст пород зонален, с зонами, границы которых параллельны рифтам, а наиболее молодые породы – у рифтов. Плиты движутся: в зонах спрединга- расхождение (дивергенция) формирование молодых офиолитов, в зонах субдукции – конвергенция, схождение, поддвиг с зонами высокого метаморфизма, а по трансформным разломам – скольжение.

 

История изучения вопроса.

В первые послевоенные годы были получены достоверные данные о строении ложа океанов и процессах, здесь протекающих. Была открыта мировая система срединноокеанских хребтов, пронизывающих все океаны планеты и осложненных в осевой части рифтовыми долинами - щелями, заполненными молодыми базальтами. Было подтверждено коренное отличие океанской коры от континентальной и обнаружено, что океанская кора характеризуется линейными магнитными аномалиями, параллельными осям срединных хребтов и расположенными симметрично по отношению к ним. Открытие того факта, что древние породы нередко сохраняют ориентировку магнитного поля, существовавшего в момент их образования (застывания для магматических, осаждения для осадочных пород), привело к разработке нового научного направления - палеомагнетизма. Данные, полученные этим методом, принесли неожиданный для самих исследователей результат: они подтвердили выводы А. Вегенера о былом соединении материков в единый суперконтинент и его последующем распаде с образованием молодых океанов. В результате уже в 1962 - 1963 годах было сформулировано представление о новообразовании океанов в процессе их расширения - спрединга, начиная от осей срединных хребтов, и заполнения базальтовой магмой, изливающейся в рифтовых щелях.

Вскоре, в 1967 г. началось глубоководное бурение, сразу же подтвердившее идею спрединга; исходя из этой идеи и недавно же установленного явления периодического обращения (инверсии) магнитного поля Земли, получило объяснение и образование линейных магнитных аномалий, столь характерных для океанов. А в 1967 - 1968 годах представление о спрединге, рождающем новую океанскую кору, было дополнено представлением о ее субдукции- поглощении в глубоководных желобах, окаймляющих вулканические островные дуги. Поглощение это происходит вдоль наклонных сейсмоактивных зон, уходящих глубоко в мантию Земли. Уточнение распределения эпицентров землетрясений на поверхности планеты показало, что земная кора и вся литосфера разделены на сравнительно небольшое число крупных и среднего размера относительно жестких и монолитных плит, в швах между которыми сосредоточена почти вся тектоническая, сейсмическая и вулканическая активность планеты. В итоге родилась новая мобилистская концепция, получившая название тектоники плит, быстро завоевавшая широкую популярность (позднее всего, однако, в нашей стране) и подтверждение, принесшее ей впервые в истории геологии статус научной теории. Ее основные положения сводятся к следующему.

1. Литосфера Земли, включающая кору и самую верхнюю часть мантии, подстилается более пластичной, менее вязкой оболочкой - астеносферой.

2. Литосфера разделена на ограниченное число крупных, несколько тысяч километров в поперечнике, и среднего размера (около 1000 км) относительно жестких и монолитных плит.

3. Литосферные плиты перемещаются друг относительно друга в горизонтальном направлении; характер этих перемещений может быть трояким: а) раздвиг (спрединг) с заполнением образующегося зияния новой корой океанского типа; б) поддвиг (субдукция) океанской плиты под континентальную или океанскую же с возникновением над зоной субдукции вулканической дуги или окраинно-континентального вулкано-плутонического пояса; в) скольжение одной плиты относительно другой по вертикальной плоскости так называемых трансформных разломов, поперечных к осям срединных хребтов.

4. Перемещение литосферных плит по поверхности астеносферы подчиняется теореме Эйлера, гласящей, что перемещение сопряженных точек на сфере происходит вдоль окружностей, проведенных относительно оси, проходящей через центр Земли; места выхода оси на поверхность получили название полюсов вращения, или раскрытия.

5. В масштабе планеты в целом спрединг автоматически компенсируется субдукцией, т.е. сколько за данный промежуток времени рождается новой океанской коры, столько же более древней океанской коры поглощается в зонах субдукции, благодаря чему объем Земли остается неизменным.

6. Перемещение литосферных плит происходит под действием конвективных течений в мантии, включая астеносферу. Под осями раздвига срединных хребтов образуются восходящие течения; они превращаются в горизонтальные на периферии хребтов и в нисходящие в зонах субдукции на окраинах океанов. Сама конвекция имеет своей причиной накопление тепла в недрах Земли вследствие его выделения при распаде естественно-радиоактивных элементов и изотопов.

Эти сравнительно простые положения позволили логично объяснить широкий круг геологических явлений: не только тектонических движений и деформаций, включая образование складчато-надвиговых горных систем и проявления регионального метаморфизма, но и разнообразие вулканических и интрузивно-магматических, а также осадочных пород и заключенных в них полезных ископаемых. К тому же эти положения получили экспериментальное подтверждение. Одним из наиболее убедительных подтверждений оказались результаты глубоководного бурения, показавшие, что возраст океанской коры систематически возрастает от осей срединных хребтов к окраинам океанов. Их дополнили наблюдения в рифтовых долинах - осях спрединга и вдоль трансформных разломов с подводных обитаемых аппаратов, а в последнее десятилетие прямые измерения методами космической геодезии позволили убедиться в том, что плиты действительно движутся на наших глазах и именно в том направлении и с той скоростью, которые предсказывает данная теория.

Создав научную теорию тектоники плит, геология впервые получила достаточно строго обоснованную теоретическую основу и тем самым поднялась на новую ступень развития, сравнявшись в этом отношении с другими естественными науками. В частности, картирование линейных магнитных аномалий с проверкой их возраста по результатам глубоководного бурения и с учетом теоремы Эйлера открыло путь к восстановлению положения материков и очертаний океанов в течение последних 180 млн. лет истории Земли с помощью графических построений на ЭВМ. Установление зависимости между глубиной океана и возрастом коры (чем древнее кора, тем больше глубина) позволило восстанавливать для того же отрезка геологической истории распределение глубин, а это, в свою очередь, дало возможность наметить картину океанских течений. Так возникло новое направление - палеоокеанология. Для более отдаленных, чем юрский период, геологических эпох столь точные построения невозможны, и приходится опираться в основном на палеомагнитные определения и данные палеобиогеографии.

Следующее двадцатилетие после появления тектоники плит - 70 - 80-е годы явились временем ее более широкого применения в глобальном и региональном масштабе. Вся картина развития земной коры и земной поверхности подверглась коренному пересмотру с мобилистских позиций. При этом, естественно, выявилось, что в действительности все процессы, описываемые тектоникой плит, протекают в более сложной форме, чем ею первоначально постулировалось. Но эти поправки все же не затрагивали главной идеи, заложенной в основу данной концепции. Исключение составила необходимость объяснения магматизма, проявляющегося внутри плит, которые рассматривались как внутренне монолитные.

 

Глубинная геодинамика

В последнее десятилетие определились два главных направления исследований в науках о Земле - глубинная геодинамика и ранняя история Земли. В задачу глубинной геодинамики входит изучение физических и химических процессов, протекающих в недрах Земли ниже уровня 400 км, т.е. границы собственно верхней мантии, образующей вместе с корой тектоносферу - основную область проявления тектоники плит. Для решения этой задачи в настоящее время применяются три метода: сейсмическая томография, экспериментальная минералогия и математическое моделирование. Дополнительные материалы для суждения о том, что происходит с веществом на соответствующих глубинах, дают алмазоносные кимберлитовые трубки, которые, как недавно выяснилось, выносят минералы с этих глубин.

Основное внимание исследователей в наши дни приковано к двум глубинным уровням: границе на 670 км между нижней и верхней мантией и к границе на 2900 км между мантией и ядром. Некоторое внимание уделяется также границе на 400 (410)км между собственно верхней мантией и переходной к нижней мантии зоной.

На всех этих границах наблюдается заметный скачок в изменении скорости распространения сейсмических волн, свидетельствующий о соответствующем изменении фазового состояния вещества, о смене одних минеральных видов другими. На границе мантия-ядро происходит не только смена твердого состояния, характерного для мантии, жидким, характерным для внешнего ядра, но и замещение силикатов, слагающих мантию, железо-никелевым веществом ядра.

Менее ясно положение с границей на глубине 670 км. Очевидно, что это в основном фазовая граница, но существуют данные, свидетельствующие о том, что здесь может происходить и некоторое изменение химизма, в частности увеличение содержания железа.

Границе мантия-ядро придается исключительно важное значение: она рассматривается как уровень зарождения мантийных струй - плюмов. Как показывают опять же данные сейсмотомографии, это справедливо на крайней мере для наиболее крупных из них, так называемых суперплюмов, проявляющихся на поверхности Земли не в виде горячих точек, а целых горячих полей.

Наиболее типичное такое поле известно в юго-западной части Тихого океана; сейсмотомография установила под ним область разуплотнения мантии вплоть до ее границы с ядром. Однако другие мантийные струи могут подниматься и с меньших глубин, в частности с границы 670 км, и питаться за счет накапливающегося здесь субдуцируемого материала.

Происходящие в слое D'' процессы некоторые исследователи привлекают для объяснения такого замечательного явления, как периодические инверсии магнитного поля Земли, выражающиеся в быстрой смене магнитных полюсов на полюсы противоположного знака. Обнаружена определенная корреляция между частотой таких инверсий и активностью мантийных струй - эпохи появления суперплюмов отвечают эпохам спокойного магнитного поля, т.е. отсутствия инверсий, подобно середине мелового периода.

Ранняя история Земли.

На втором главном направлении современных исследований - изучении ранней истории Земли - в последние годы также достигнуты существенные успехи. В этих исследованиях основное внимание уделено определению абсолютного возраста горных пород радиоизотопными методами. В настоящее время достигнута поразительная точность - первые миллионы лет для пород с возрастом более трех миллиардов лет. Возраст древнейших пород, сохранившихся на поверхности Земли, не превышает 4,0 млрд. лет, но возраст переотложенных в более молодых породах зерен циркона, обнаруженных в Австралии, составляет 4,2 - 4,3 млрд. лет. Иначе говоря, первые 300 миллионов лет существования Земли остаются недокументированными.

Предполагается, что первоначально, когда Земля еще была сильно разогрета, на или близ ее поверхности существовал "магматический океан", в результате застывания которого образовалась первичная базальтовая или близкая по составу кора Земли. Примерно одновременно за счет конденсации водяных паров, окутывавших Землю, образовалась ее водная оболочка - гидросфера. Повторное плавление этой коры либо под влиянием мантийных струй, либо в первых зонах субдукции привело к возникновению островов континентальной, вернее, протоконтинентальной коры, сложенной натровыми гранитоидами, превращенными в гнейсы. Это так называемые "серые гнейсы", распространенные на всех древних щитах. Именно по ним получены самые древние возрастные определения - 4,0 - 3,2 млрд. лет. В среднем и вполне определенно в позднем архее, т.е. после 3,5 млрд. лет активно развивались вулканические дуги, сформированные на первичной, остаточной или вторичной, новообразованной при растяжении океанской коре над зонами субдукции. Эти дуги последовательно примыкали к древним "серогнейсовым" ядрам, наращивая их. Таким образом, к концу архея, т.е. 2,7 - 2,5 млрд. лет назад, возникли уже значительные площади континентальной коры, которые, вероятно, слились в единый суперконтинент, первую Пангею в истории Земли. Мощность этой коры достигла нормальной для современных континентов мощности в 35 - 40 км, низы ее под влиянием высоких давления и температуры испытали значительный метаморфизм, а на средних уровнях произошло выплавление больших масс гранитов, теперь уже содержавших больше окисла калия, чем натрия.

В начале протерозоя (2,5 млрд. лет назад) произошла крупная перестройка структурного плана Земли. Возникший в конце архея суперконтинент - первая Пангея - претерпел деструкцию и к 2,3 - 2,2 млрд. лет распался на отдельные, относительно небольшие континенты, разделенные бассейнами с новообразованной океанской корой. Соответственно раннепротерозойская тектоника может быть названа тектоникой малых плит, в то время как позднеархейская тектоника - эмбриональной тектоникой плит. К концу раннего протерозоя (около 1,7 млрд. лет) континенты вновь спаялись в единый суперконтинент; образовалась новая Пангея. Распад этой Пангеи начался после 1,0 млрд. лет, хотя частичная ее деструкция и восстановление могли иметь место и в промежутке между 1,7 и 1,0 млрд. лет. В интервале 1,0 - 0,6 млрд. лет структурный план земной коры претерпел радикальные изменения и существенно приблизился к современному; с этого времени, как отмечалось, вступила в действие полномасштабная тектоника плит. Возник Тихий океан, наметились прообразы современных Северной Атлантики и будущего широтного океана Тетис, разделившего континенты на северную и южную группы. Но к концу палеозойской эры все континенты вновь спаялись в единый суперматерик; это и есть вегенеровская Пангея.

Таким образом, в истории Земли, как теперь выяснилось, неоднократно происходило формирование и затем распад Пангеи. Длительность таких циклов составляет 500 - 600 млн. лет, т.е. отвечает времени смены двухъярусной конвекции общемантийной (см. выше). Но на эту крупномасштабную периодичность изменения конвективного режима земных недр накладывается периодичность меньших порядков, проявляющаяся в усилении или ослаблении противоположно направленных тенденций: растяжения коры - рифтогенеза и ее сжатия - орогенеза. Связано это, очевидно, с периодическим усилением и ослаблением тепловыделения из недр Земли, что, в свою очередь, должно было отражаться на некотором изменении радиуса Земли. Следовательно, постулат классической тектоники плит о неизменности объема Земли вследствие автоматической компенсации спрединга субдукцией может быть принят лишь в самой общей форме, а в действительности Земля может претерпевать некоторую пульсацию своего объема. Мало того, поскольку наша планета несомненно испытывает вековое охлаждение, растрачивая запасенное при своем образовании и выделяемое естественно радиоактивными элементами тепло, должна проявляться общая тенденция уменьшения ее радиуса.



infopedia.su

Структура земной коры

Геологические реконструкции прошлых периодов в истории Земли свидетельствуют о том, что на нашей планете уже много сотен миллионов лет назад сформировались как жесткие и малоподвижные глыбы — платформы и щиты, так и подвижные горные пояса, которые часто называют геосинклинальными. К ним относятся и огромные вулканические пояса, обрамляющие моря и целые океаны. В XX в. эти научные представления были дополнены новыми данными, среди которых в первую очередь следует назвать открытие срединно-океанических хребтов, глубоководных желобов и океанических котловин.

Наиболее устойчивыми участками земной коры являются платформы. Площадь их составляет многие тысячи и даже миллионы квадратных километров. Когда-то они были подвижными, но со временем превратились в жесткие массивы. Платформы, как правило, состоят из двух этажей. Нижний этаж построен из древних кристаллических пород, верхний — из более молодых. Породы нижнего этажа называют фундаментом платформы. Выступы такого фундамента можно наблюдать в Карелии, на Украине, в Восточной Сибири и Канаде. Благодаря своей массивности и жесткости эти выступы получили название — шиты. Это самые древние участки земной коры: возраст многих достигает 3 — 4 млрд. лет. За это время в породах произошли необратимые изменения состава, перекристаллизация, уплотнения и другие метаморфозы.

Верхний этаж платформ образуют огромные толщи осадочных пород, накопившихся в течение сотен миллионов лет. В этих толщах наблюдаются пологие складки, разрывы, валы и купола. Следами особенно крупных поднятий и опусканий являются антеклизы и синеклизы. Антеклиза по своей форме напоминает гигантский холм площадью 60 — 100 тыс. км2. Высота такого холма небольшая — около 300 — 500 м.

Окраины антеклизы ступенями спускаются к окружающим их синеклизам (от греч. syn — вместе и enklisis — наклонение). На окраинах синеклиз и антеклиз часто встречаются отдельные валы и купола — мелкие тектонические формы. Для платформ, прежде всего, характерны ритмические колебания, что приводило к последовательной смене поднятий и опусканий. В процессе этих движений возникали прогибы, небольшие складки, тектонические трещины.

Строение осадочного чехла на платформах осложняют тектонические структуры, появление которых объяснить непросто. Например, под северной частью дна Каспийского моря и под Прикаспийской низменностью скрыт огромный замкнутый со всех сторон бассейн глубиной более 22 км. В поперечнике этот бассейн достигает 2000 км. Его заполняют глины, известняки, каменная соль и другие породы. Верхние 5 — 8 км осадков относят к палеозойскому возрасту. По геофизическим данным, в центре этой впадины отсутствует гранито-гнейсовый слой и толща осадочных пород залегает непосредственно на гранулито-базальтовом слое. Такое строение больше характерно для впадин с океаническим типом земной коры, поэтому Прикаспийскую впадину считают реликтом древнейших докембрийских океанов.

Полной противоположностью платформам являются орогенические пояса — горные пояса, возникшие на месте прежних геосинклиналей. Они, так же как и платформы, принадлежат к длительно развивающимся тектоническим структурам, но скорости движения земной коры в них оказались значительно большими, а силы сжатия и растяжения создали на поверхности Земли крупные горные хребты и впадины. Тектонические напряжения в орогенических поясах то усиливались, то резко уменьшались, а потому можно проследить и фазы роста горных сооружений, и фазы их разрушения.

Боковое сжатие блоков земной коры в прошлом нередко приводило к разделению блоков на тектонические пластины, каждая из которых имела толщину 5—10 км. Тектонические пластины коробились и часто надвигались одна на другую. В результате древние породы оказывались надвинутыми на более молодые породы. Крупные надвиги, измеряемые десятками километров, ученые называют шарьяжами. Их особенно много в Альпах, Карпатах, Гималаях и Кордильерах, но шарьяжи встречаются и на платформах, где смещение пластин земной коры приводило к образованию складок и валов, например в Жигулевских горах.

Дно морей и океанов долго оставалось малоисследованной областью Земли. Только в первой половине XX в. были открыты срединно-океанические хребты, которые впоследствии были обнаружены во всех океанах планеты. Они имели разную структуру и возраст. Результаты глубоководного бурения тоже способствовали изучению структуры срединно-океанических хребтов. Осевые зоны срединно-океанических хребтов вместе с рифтовыми впадинами бывают смещены на сотни и тысячи километров. Эти смещения наиболее часто происходят по крупным разломам (так называемым трансформным разломам), которые образовались в разные геологические эпохи.

geographyofrussia.com

Строение земной коры

Земная кора – внешняя твердая оболочка Земли, верхняя часть литосферы. От мантии Земли земная кора отделена поверхностью Мохоровичича.

Принято выделять материковую и океаническую кору, которые различаются по своему составу, мощности, строению и возрасту. Материковая кора расположена под материками и их подводными окраинами (шельфом). Земная кора материкового типа толщиной от 35-45 км расположена под равнинами до 70 км в области молодых гор. Наиболее древние участки материковой коры имеют геологический возраст, превышающий 3 миллиарда лет. Она состоит из таких оболочек: коры вы­ветривания, осадочной, метаморфической, гранитной, базальтовой.

Океаническая земная кора значительно моложе, её возраст не превышает 150-170 миллионов лет. Она имеет меньшую мощность – 5-10 км. В пределах океанической земной коры отсутствует граничный слой. В строении земной коры океанического типа выделяют следую­щие слои: неуплотненных осадочных пород (до 1 км), вулкани­ческий океанический, который состоит из уплотненных осадков (1-2 км), базальтовый (4-8 км).

Каменная оболочка Земли не представляет собой единого целого. Она состоит из отдельных блоков – литосферных плит. Всего на земном шаре насчитывается 7 крупных и несколько более мелких плит. К крупным относятся Евразиатская, Североамериканская, Южноамериканская, Африканская, Индо–Австралийская (Индийская), Антарктическая и Тихоокеанская плиты. В пределах всех крупных плит, за исключением последней, расположены материки. Границы литосферных плит проходят, как правило, вдоль срединно-океанических хребтов и глубоководных желобов.

Литосферные плиты постоянно изменяются: две плиты могут спаиваться в единую в результате коллизии; в результате рифтинга может произойти раскол плиты на несколько частей. Литосферные плиты могут погружаться в мантию земли, достигая при этом земное ядро. Поэтому разделение земной коры на плиты не однозначно: с накоплением новых знаний некоторые границы плит признаются несуществующими, выделяются новые плиты.

В пределах литосферных плит расположены участки с различными типами земной коры. Так, восточная часть Индо-Австралийской (Индийской) плиты – материк, а западная расположена в основании Индийского океана. У Африканской плиты материковая земная кора с трёх сторон окружена океанической. Подвижность атмосферной плиты определяется соотношением в её пределах материковой и океанической коры.

При столкновении литосферных плит возникает складкообразование слоев горных пород. Складчатые пояса – подвижные, сильно расчленённые участки земной поверхности. В их развитии выделяется два этапа. На начальном этапе земная кора испытывает преимущественно опускания, происходит накопление осадочных горных пород и их метаморфизация. На заключительном этапе опускание сменяется поднятием, горные породы сминаются в складки. В течение последнего миллиарда лет на Земле было несколько эпох интенсивных горообразований: байкальское горообразование, каледонское, герцинское, мезозойское и кайнозойское. В соответствии  с этим выделяют различные области складчатости.

Впоследствии горные породы, из которых состоит складчатая область, теряют подвижность и начинают разрушаться. На поверхности накапливаются осадочные породы. Образуются устойчивые участки земной коры – платформы. Они обычно состоят из складчатого фундамента (остатки древних гор),  перекрытого сверху слоями горизонтально залегающих осадочных пород, образующих чехол. В соответствии с возрастом фундамента выделяют древние и молодые платформы. Участки пород, где фундамент погружён на глубину и перекрыт осадочными породами, называют плитами. Места выхода фундамента на поверхность называют щитами. Они более характерны для древних платформ. В основании всех материков расположены древние платформы, края которых являются складчатыми областями разного возраста.

Распространение платформенных и складчатых областей можно увидеть на тектонической географической карте, или на карте строения земной коры.

Остались вопросы? Хотите знать больше о строении земной коры?Чтобы получить помощь репетитора – зарегистрируйтесь.

© blog.tutoronline.ru, при полном или частичном копировании материала ссылка на первоисточник обязательна.

blog.tutoronline.ru