Математика в древнем египте. Математика в Древнем Египте
История современного города Афины.
Древние Афины
История современных Афин

Математика в Древнем Египте. Математика в древнем египте


Математика в Древнем Египте Вики

Данная статья — часть обзора История математики.

Статья посвящена состоянию и развитию математики в Древнем Египте в период примерно с XXX по III век до н. э.

Древнейшие древнеегипетские математические тексты относятся к началу II тысячелетия до н. э. Математика тогда использовалась в астрономии, мореплавании, землемерии, при строительстве зданий, плотин, каналов и военных укреплений. Денежных расчётов, как и самих денег, в Египте не было. Египтяне писали на папирусе, который сохраняется плохо, и поэтому наши знания о математике Египта существенно меньше, чем о математике Вавилона или Греции. Вероятно, она была развита лучше, чем можно представить, исходя из дошедших до нас документов — известно[1], что греческие математики учились у египтян[2].

Нам ничего не известно о развитии математических знаний в Египте как в более древние, так и в более поздние времена. После воцарения Птолемеев начинается чрезвычайно плодотворный синтез египетской и греческой культур.

Источники[ | код]

Часть папируса Ахмеса.Задачи с 49 по 55.

Основные сохранившиеся источники относятся к периоду Среднего царства, времени расцвета древнеегипетской культуры:

От Нового царства до нас дошли несколько фрагментов вычислительного характера.

Авторы всех этих текстов нам неизвестны. Дошедшие до нас экземпляры — это в основном копии, переписанные в период гиксосов. Носители научных знаний тогда именовались писцами и фактически были государственными или храмовыми чиновниками.

Все задачи из папируса Ахмеса (записан ок. 1650 года до н. э.) имеют прикладной характер и связаны с практикой строительства, размежеванием земельных наделов и т. п. Задачи сгруппированы не по методам, а по тематике. По преимуществу это задачи на нахождение площадей треугольника, четырёхугольников и круга, разнообразные действия с целыми числами и аликвотными дробями, пропорциональное деление, нахождение отношений, возведение в разные степени, определение среднего арифметического, арифметические прогрессии, решение уравнений первой и второй степени с одним неизвестным[3].

Полностью отсутствуют какие бы то ни было объяснения или доказательства. Искомый результат либо даётся прямо, либо приводится краткий алгоритм его вычисления.

Такой способ изложения, типичный для науки стран древнего Востока, наводит на мысль о том, что математика там развивалась путём индуктивных обобщений и гениальных догадок, не образующих никакой общей теории. Тем не менее, в папирусе есть целый ряд свидетельств того, что математика в Древнем Египте тех лет имела или, по крайней мере, начинала приобретать теоретический характер. Так, египетские математики умели извлекать корни (целочисленные) и возводить в степень[4], решать уравнения, были знакомы с арифметической и геометрической прогрессией и даже владели зачатками алгебры: при решении уравнений специальный иероглиф «куча» обозначал неизвестное.

Нумерация (запись чисел)[ | код]

Иероглифическая запись числа 35736

Древнеегипетская нумерация, то есть запись чисел, была похожа на римскую: поначалу были отдельные значки для 1, 10, 100, … 10 000 000, сочетавшиеся аддитивно (складываясь). Египтяне писали справа налево, и младшие разряды числа записывались первыми, так что в конечном счёте порядок цифр соответствовал нашему. В иератическом письме уже есть отдельные обозначения для цифр 1-9 и сокращённые значки для разных десятков, сотен и тысяч.

Любое число в Древнем Египте можно было записать двумя способами: словами и цифрами. Например, чтобы написать число 30, можно было использовать обычные иероглифы:

или то же самое написать цифрами (три символа десятки):

Плита с гробницы принцессы Неферетиабет (2590—2565 до н. э., Гиза). Лувр

Умножение египтяне производили с помощью сочетания удвоений и сложений. Деление заключалось в подборе делителя, то есть как действие, обратное умножению.

Особые значки обозначали дроби вида 1n{\displaystyle {\frac {1}{n}}} и 23{\displaystyle {\frac {2}{3}}}. Однако общего понятия дроби mn{\displaystyle {\frac {m}{n}}} у них не было, и все неканонические дроби представлялись как сумма аликвотных дробей. Типовые разложения были сведены в громоздкие таблицы.

Пример записи дробей из Папируса Ринда[5]

5 + 1⁄2 + 1⁄7 + 1⁄14 (= 5 5⁄7)

Арифметика[ | код]

Знаки сложения и вычитания[ | код]

Чтобы показать знаки сложения или вычитания использовался иероглиф

или

Если направление ног у этого иероглифа совпадало с направлением письма, тогда он означал «сложение», в других случаях он означал «вычитание».[6]

Сложение[ | код]

Если при сложении получается число большее десяти, тогда десяток записывается повышающим иероглифом.

Например: 2343 + 1671

+

Собираем все однотипные иероглифы вместе и получаем:

Преобразуем:

Окончательный результат выглядит вот так:

Умножение[ | код]

Древнеегипетское умножение является последовательным методом умножения двух чисел. Чтобы умножать числа, им не нужно было знать таблицы умножения, а достаточно было только уметь раскладывать числа на кратные основания, умножать эти кратные числа и складывать.

Египетский метод предполагает раскладывание наименьшего из двух множителей на кратные числа и последующее их последовательное переумножение на второй множитель

Этот метод можно и сегодня встретить в очень отдаленных регионах.

Разложение[ | код]

Египтяне использовали систему разложения наименьшего множителя на кратные числа, сумма которых составляла бы исходное число.

Чтобы правильно подобрать кратное число, нужно было знать следующую таблицу значений:

1 x 2 = 22 x 2 = 44 x 2 = 88 x 2 = 1616 x 2 = 32

Пример разложения числа 25:

  • Кратный множитель для числа «25» — это 16.
  • 25 — 16 = 9,
  • Кратный множитель для числа «9» — это 8,
  • 9 — 8 = 1,
  • Кратный множитель для числа «1» — это 1,
  • 1 — 1 = 0

Таким образом «25» — это сумма трех слагаемых: 16, 8 и 1.

Пример: умножим «13» на «238»:

1 х 238 = 238
4 х 238 = 952
8 х 238 = 1904
13 х 238 = 3094

Известно, что 13 = 8 + 4 + 1. Каждое из этих слагаемых нужно умножить на 238. Получаем: 13 × 238 = (8 + 4 + 1) × 238 = 8 x 238 + 4 × 238 + 1 × 238 = 3094.

Уравнения[ | код]

Иероглифическая запись уравнения x(23+12+17+1)=37{\displaystyle x\left({\frac {2}{3}}+{\frac {1}{2}}+{\frac {1}{7}}+1\right)=37}

Пример задачи из папируса Ахмеса:

Найти число, если известно, что от прибавления к нему 2/3 его и вычитания из результата его трети получается 10.

Геометрия[ | код]

Вычисление площадей[ | код]

В области геометрии египтяне знали точные формулы для площади прямоугольника, треугольника и трапеции. Площадь произвольного четырёхугольника со сторонами a, b, c, d вычислялась приближённо как S=a+c2⋅b+d2{\displaystyle S={\frac {a+c}{2}}\cdot {\frac {b+d}{2}}}; эта грубая формула даёт приемлемую точность, если фигура близка к прямоугольнику.

Египтяне предполагали, что площадь круга S диаметром d равна площади квадрата, сторона которого составляет 8/9 диаметра: S=(d−d9)2=(89d)2.{\displaystyle S=\left(d-{\frac {d}{9}}\right)^{2}=\left({\frac {8}{9}}d\right)^{2}.} Это правило соответствует приближению π≈4⋅(89)2{\displaystyle \pi \approx 4\cdot \left({\frac {8}{9}}\right)^{2}} ≈ 3,1605 (погрешность менее 1 %)[7]..

Некоторые исследователи[8] на основании 10-й задачи Московского математического папируса считали, что египтяне знали точную формулу для вычисления площади сферы, однако другие учёные с этим не согласны[9][10].

Вычисление объёмов[ | код]

Реконструкция водяных часов по чертежам из Оксиринха

Египтяне могли высчитывать объёмы параллелепипеда, цилиндра, конуса и пирамид. Для вычисление объёма усечённой пирамиды египтяне пользовались следующим правилом: пусть мы имеем правильную усечённую пирамиду со стороной нижнего основания a, верхнего b и высотой h; тогда объём вычислялся по следующей (правильной) формуле: V=(a2+ab+b2)⋅h4.{\displaystyle V=(a^{2}+ab+b^{2})\cdot {\frac {h}{3}}.}

Древний свиток папируса, найденный в Оксиринхе, свидетельствует, что египтяне могли вычислять также объём усечённого конуса. Эти знания ими использовались для сооружения водяных часов. Так, например, известно, что при Аменхотепе III были построены водяные часы в Карнаке[источник не указан 1181 день].

Египетский треугольник[ | код]

Египетским треугольником называется прямоугольный треугольник с соотношением сторон 3:4:5. Плутарх в первом веке об этом треугольнике в сочинении «Об Исиде и Осирисе» писал: «видимо, египтяне сравнивают природу Всеобщности с красивейшим из треугольников». Возможно, именно из-за этого этот треугольник получил название египетского[11]. Действительно, греческие учёные сообщали, что в Египте для построения прямого угла использовалась верёвка, разделённая на 12 частей.

Египетский треугольник активно применялся для построения прямых углов египетскими землемерами и архитекторами, например, при построении пирамид. Историк Ван дер Варден попытался поставить этот факт под сомнение, однако более поздние исследования его подтвердили[12]. В любом случае, нет никаких свидетельств, что в Древнем Египте была известна теорема Пифагора в общем случае (в отличие от Древнего Вавилона)[13].

См. также[ | код]

Примечания[ | код]

  1. ↑ Ван дер Варден Б. Л. Пробуждающаяся наука. Математика древнего Египта, Вавилона и Греции. Указ. соч., стр. 125: «Фалес путешествовал в Египет и привёз геометрию в Элладу» (из комментария Прокла к Евклиду).
  2. ↑ «Согласно большинству мнений, геометрия была впервые открыта в Египте, и возникла при измерении площадей» // Proclus Diadochus. In primum Euclidis Elementorum commentarii. — Leipzig, 1873. — С. 64.
  3. ↑ История математики, том I, 1970, с. 21—33..
  4. ↑ История математики, том I, 1970, с. 24..
  5. ↑ Gardiner Alan H. Egyptian grammar: being an introduction to the study of hieroglyphs 3rd ed., rev. London: 1957, p. 197.
  6. ↑ Cajori, Florian. A History of Mathematical Notations. — Dover Publications, 1993. — P. pp. 229–230. — ISBN 0486677664.
  7. ↑ История математики, том I, 1970, с. 30—32..
  8. ↑ W. W. Struve. Mathematischer Papyrus des Museum in Moskau. — Quellen und Studien zur Geschichte der Mathematik, Astronomie und Physik, Abteilung A. — Berlin: Springer, 1930. — С. 157.
  9. ↑ История математики, том I, 1970, с. 31—32..
  10. ↑ Ван дер Варден Б. Л. Пробуждающаяся наука. Математика древнего Египта, Вавилона и Греции, стр. 44-45
  11. ↑ Прасолов В. В. Глава 1. Древний Египет и Вавилон // История математики. — (не публиковалась), 2013. — С. 5.
  12. ↑ Ван дер Варден Б. Л. Пробуждающаяся наука. Математика древнего Египта, Вавилона и Греции. М.: Физматлит, 1959, С. 13, подстрочное примечание
  13. ↑ История математики, том I, 1970, с. 31..

Литература[ | код]

  • Ван дер Варден. Пробуждающаяся наука. Математика древнего Египта, Вавилона и Греции. — М.: Наука, 1959. — 456 с.
  • Веселовский И. Н. Египетская наука и Греция. Труды ИИЕ, 2, 1948, с. 426—498.
  • Выгодский М. Я. Арифметика и алгебра в древнем мире. — М.: Наука, 1967.
  • Депман И. Я. История арифметики. Пособие для учителей. — Изд. второе. — М.: Просвещение, 1965. — 416 с.
  • История математики. С древнейших времен до начала Нового времени // История математики / Под редакцией А. П. Юшкевича, в трёх томах. — М.: Наука, 1970. — Т. I.
  • Нейгебауер О. Лекции по истории античных математических наук. — Москва-Ленинград, 1937.
  • Раик А. Е. Две лекции о египетской и вавилонской математике // Историко-математические исследования. — М.: Физматгиз, 1959. — № 12. — С. 271-320.
  • Раик А. Е. Очерки по истории математики в древности. Саранск: Мордовское гос. изд-во, 1977.
  • Gillings R. J. Mathematics in the time of the pharaohs. Cambridge: MIT Press, 1972.
  • Rossi C. Architecture and mathematics in Ancient Egypt. Cambridge (UK): Cambridge UP, 2004.
  • Vogel K. Vorgriechische Mathematik I, Vorgeschichte und Ägypten. Hannover: Schrödel, 1958.

Ссылки[ | код]

ru.wikibedia.ru

Математика в Древнем Египте

Данная статья — часть обзора История математики.

Статья посвящена состоянию и развитию математики в Древнем Египте в период примерно с XXX по III век до н. э.

Древнейшие древнеегипетские математические тексты относятся к началу II тысячелетия до н. э. Математика тогда использовалась в астрономии, мореплавании, землемерии, при строительстве зданий, плотин, каналов и военных укреплений. Денежных расчётов, как и самих денег, в Египте не было. Египтяне писали на папирусе, который сохраняется плохо, и поэтому наши знания о математике Египта существенно меньше, чем о математике Вавилона или Греции. Вероятно, она была развита лучше, чем можно представить, исходя из дошедших до нас документов — известно[1], что греческие математики учились у египтян[2].

Нам ничего не известно о развитии математических знаний в Египте как в более древние, так и в более поздние времена. После воцарения Птолемеев начинается чрезвычайно плодотворный синтез египетской и греческой культур.

Источники

Часть папируса Ахмеса.Задачи с 49 по 55.

Основные сохранившиеся источники относятся к периоду Среднего царства, времени расцвета древнеегипетской культуры:

  • Папирус Ахмеса или папирус Ринда — наиболее объёмный манускрипт, содержащий 84 математические задачи. Написан около 1650 г. до н. э.
  • Московский математический папирус (25 задач), около 1850 г. до н. э., 544 × 8 см.
  • Так называемый «кожаный свиток» (англ.), 25 × 43 см.
  • Папирусы из Лахуна (Кахуна) (англ.), содержащие ряд фрагментов на математические темы.
  • Берлинский папирус (англ.), около 1300 года до н. э.
  • Каирские деревянные таблички (таблички Ахмима).
  • Папирус Рейснера (англ.), примерно XIX век до н. э.

От Нового царства до нас дошли несколько фрагментов вычислительного характера.

Авторы всех этих текстов нам неизвестны. Дошедшие до нас экземпляры — это в основном копии, переписанные в период гиксосов. Носители научных знаний тогда именовались писцами и фактически были государственными или храмовыми чиновниками.

Все задачи из папируса Ахмеса (записан ок. 1650 года до н. э.) имеют прикладной характер и связаны с практикой строительства, размежеванием земельных наделов и т. п. Задачи сгруппированы не по методам, а по тематике. По преимуществу это задачи на нахождение площадей треугольника, четырёхугольников и круга, разнообразные действия с целыми числами и аликвотными дробями, пропорциональное деление, нахождение отношений, возведение в разные степени, определение среднего арифметического, арифметические прогрессии, решение уравнений первой и второй степени с одним неизвестным[3].

Полностью отсутствуют какие бы то ни было объяснения или доказательства. Искомый результат либо даётся прямо, либо приводится краткий алгоритм его вычисления.

Такой способ изложения, типичный для науки стран древнего Востока, наводит на мысль о том, что математика там развивалась путём индуктивных обобщений и гениальных догадок, не образующих никакой общей теории. Тем не менее, в папирусе есть целый ряд свидетельств того, что математика в Древнем Египте тех лет имела или, по крайней мере, начинала приобретать теоретический характер. Так, египетские математики умели извлекать корни (целочисленные) и возводить в степень[4], решать уравнения, были знакомы с арифметической и геометрической прогрессией и даже владели зачатка

readtiger.com

Математика в Древнем Египте

Статья посвящена состоянию и развитию математики в Древнем Египте в период примерно с XXX по III век до н. э.

Древнейшие древнеегипетские математические тексты относятся к началу II тысячелетия до н. э. Математика тогда использовалась в астрономии, мореплавании, землемерии, при строительстве зданий, плотин, каналов и военных укреплений. Денежных расчётов, как и самих денег, в Египте не было. Египтяне писали на папирусе, который сохраняется плохо, и поэтому наши знания о математике Египта существенно меньше, чем о математике Вавилона или Греции. Вероятно, она была развита лучше, чем можно представить, исходя из дошедших до нас документов — известно[1], что греческие математики учились у египтян[2].

Нам ничего не известно о развитии математических знаний в Египте как в более древние, так и в более поздние времена. После воцарения Птолемеев начинается чрезвычайно плодотворный синтез египетской и греческой культур.

[править] Источники

Часть папируса Ахмеса.Задачи с 49 по 55.

Основные сохранившиеся источники относятся к периоду Среднего царства, времени расцвета древнеегипетской культуры:

  • Папирус Ахмеса или папирус Ринда — наиболее объёмный манускрипт, содержащий 84 математические задачи. Написан около 1650 г. до н. э.
  • Московский математический папирус (25 задач), около 1850 г. до н. э., 544 × 8 см.
  • Так называемый «кожаный свиток», 25 × 43 см.
  • Папирусы из Лахуна (Кахуна), содержащие ряд фрагментов на математические темы.
  • Берлинский папирус, около 1300 года до н. э.
  • Каирские деревянные таблички (таблички Ахмима).
  • Папирус Рейснера, примерно XIX век до н. э.

От Нового царства до нас дошли несколько фрагментов вычислительного характера.

Авторы всех этих текстов нам неизвестны. Дошедшие до нас экземпляры — это в основном копии, переписанные в период гиксосов. Носители научных знаний тогда именовались писцами и фактически были государственными или храмовыми чиновниками.

Все задачи из папируса Ахмеса (записан ок. 1650 года до н. э.) имеют прикладной характер и связаны с практикой строительства, размежеванием земельных наделов и т. п. Задачи сгруппированы не по методам, а по тематике. По преимуществу это задачи на нахождение площадей треугольника, четырёхугольников и круга, разнообразные действия с целыми числами и аликвотными дробями, пропорциональное деление, нахождение отношений, возведение в разные степени, определение среднего арифметического, арифметические прогрессии, решение уравнений первой и второй степени с одним неизвестным [3].

Полностью отсутствуют какие бы то ни было объяснения или доказательства. Искомый результат либо даётся прямо, либо приводится краткий алгоритм его вычисления.

Такой способ изложения, типичный для науки стран древнего Востока, наводит на мысль о том, что математика там развивалась путём индуктивных обобщений и гениальных догадок, не образующих никакой общей теории. Тем не менее, в папирусе есть целый ряд свидетельств того, что математика в Древнем Египте тех лет имела или, по крайней мере, начинала приобретать теоретический характер. Так, египетские математики умели извлекать корни и возводить в степень, решать уравнения, были знакомы с арифметической и геометрической прогрессией и даже владели зачатками алгебры: при решении уравнений специальный иероглиф «куча» обозначал неизвестное.

[править] Нумерация (запись чисел)

Иероглифическая запись числа 35736

Древнеегипетская нумерация, то есть запись чисел, была похожа на римскую: поначалу были отдельные значки для 1, 10, 100, … 10 000 000, сочетавшиеся аддитивно (складываясь). Египтяне писали справа налево, и младшие разряды числа записывались первыми, так что в конечном счёте порядок цифр соответствовал нашему. В иератическом письме уже есть отдельные обозначения для цифр 1-9 и сокращённые значки для разных десятков, сотен и тысяч.

Любое число в Древнем Египте можно было записать двумя способами: словами и цифрами. Например, чтобы написать число 30, можно было использовать обычные иероглифы:

или то же самое написать цифрами (три символа десятки):

 

Плита с гробницы принцессы Неферетиабет (2590—2565 до н. э., Гиза). Лувр

Умножение египтяне производили с помощью сочетания удвоений и сложений. Деление заключалось в подборе делителя, то есть как действие, обратное умножению.

Особые значки обозначали дроби вида и . Однако общего понятия дроби у них не было, и все неканонические дроби представлялись как сумма аликвотных дробей. Типовые разложения были сведены в громоздкие таблицы.

Примеры изображения часто встречающихся дробей
1 / 2 1 / 3 2 / 3 1 / 4 1 / 5

Пример записи дробей из Папируса Ринда[4]

5 + 1⁄2 + 1⁄7 + 1⁄14 (= 5 5⁄7)

[править] Арифметика

[править] Знаки сложения и вычитания

Чтобы показать знаки сложения или вычитания использовался иероглиф

или

Если направление ног у этого иероглифа совпадало с направлением письма, тогда он означал «сложение», в других случаях он означал «вычитание».[5]

[править] Сложение

Если при сложении получается число большее десяти, тогда десяток записывается повышающим иероглифом.

Например: 2343 + 1671

+

Собираем все однотипные иероглифы вместе и получаем:

Преобразуем:

Окончательный результат выглядит вот так:

[править] Умножение

Основная статья: Умножение в Древнем Египте

Древнеегипетское умножение является последовательным методом умножения двух чисел. Чтобы умножать числа, им не нужно было знать таблицы умножения, а достаточно было только уметь раскладывать числа на кратные основания, умножать эти кратные числа и складывать.

Египетский метод предполагает раскладывание наименьшего из двух множителей на кратные числа и последующее их последовательное переумножение на второй множитель (см. пример).

Этот метод можно и сегодня встретить в очень отдаленных регионах.

[править] Разложение

Египтяне использовали систему разложения наименьшего множителя на кратные числа, сумма которых составляла бы исходное число.

Чтобы правильно подобрать кратное число, нужно было знать следующую таблицу значений:

1 x 2 = 22 x 2 = 44 x 2 = 88 x 2 = 1616 x 2 = 32

Пример разложения числа 25:

  • Кратный множитель для числа «25» — это 16.
  • 25 — 16 = 9,
  • Кратный множитель для числа «9» — это 8,
  • 9 — 8 = 1,
  • Кратный множитель для числа «1» — это 1,
  • 1 — 1 = 0

Таким образом «25» — это сумма трех слагаемых: 16, 8 и 1.

Пример: умножим «13» на «238»:

1 х 238 = 238
4 х 238 = 952
8 х 238 = 1904
 
  13 х 238 = 3094          

Известно, что 13 = 8 + 4 + 1. Каждое из этих слагаемых нужно умножить на 238. Получаем: 13 × 238 = (8 + 4 + 1) × 238 = 8 x 238 + 4 × 238 + 1 × 238 = 3094.

[править] Уравнения

Иероглифическая запись уравнения

Пример задачи из папируса Ахмеса:

Найти число, если известно, что от прибавления к нему 2/3 его и вычитания из результата его трети получается 10.

[править] Геометрия

В области геометрии египтяне знали точные формулы для площади прямоугольника, треугольника, трапеции и сферы, могли высчитывать объемы параллелепипеда, цилиндра и пирамид. Площадь произвольного четырёхугольника со сторонами a, b, c, d вычислялась приближённо как ; эта грубая формула даёт приемлемую точность, если фигура близка к прямоугольнику.

Египтяне предполагали, что площадь круга S диаметром d равна площади квадрата, сторона которого составляет 8/9 диаметра:

Это правило соответствует значению (≈ 3,1605, погрешность менее 1 %)[6].

Ещё одна ошибка содержится в Акмимском папирусе [7]: автор считает, что если радиус круга A есть среднее арифметическое радиусов двух других кругов B и C, то и площадь круга A есть среднее арифметическое площадей кругов B и C.

Вычисление объёма усечённой пирамиды: пусть мы имеем правильную усечённую пирамиду со стороной нижнего основания a, верхнего b и высотой h; тогда объём вычислялся по оригинальной, но точной формуле:

[править] Египетский треугольник

Египетский треугольник

Основная статья: Египетский треугольник

Египетским треугольником называется прямоугольный треугольник с соотношением сторон 3:4:5.

[править] Объём усечённого конуса

Реконструкция водяных часов по чертежам из Оксиринха

Древний свиток папируса, найденный в Оксиринхе, свидетельствует, что египтяне могли вычислять объем усеченного конуса. Эти знания ими использовались для сооружения водяных часов. Так, например, известно, что при Аменхотепе III были построены водяные часы в Карнаке

studopedya.ru

Математика Древнего Египта

МАТЕМАТИКА ДРЕВНЕГО ЕГИПТА Бурдун Вячеслав г. Луганск ССФМШ №1 6-а класс 11 лет

Математика Древнего Египта Мы начнем наше исследование гораздо раньше указанных дат в описании проекта. Ведь успехи античных математиков (в том числе и Фалеса) не могли возникнуть на пустом месте. Народы Древнего востока на протяжении многих веков сделали немало открытий в арифметике, геометрии и астрономии. Самые ранние математические тексты, известные в наши дни, оставили две великие цивилизации древности - Египет и Месопотамия. Именно там появились первые математические задачи, решения которых требовала повседневная жизнь. Уровень древнеегипетской математики был довольно высок. Источников, по которым можно судить об уровне математических знаний древних египтян, совсем немного. Во-первых, это папирус Райнда, названный так по имени своего первого владельца. Он был найден в 1858 г., расшифрован и издан в 1870 г. Рукопись представляла собой узкую (33 см) и длинную (5,25 м) полосу папируса, содержащую 84 задачи. Теперь одна часть папируса хранится в Британском музее в Лондоне, а другая находится в Нью-Йорке. Во-вторых, так называемый Московский папирус - его в декабре 1888 г. приобрёл в Луксоре русский Египтолог Владимир Семёнович Голенищев. Сейчас папирус принадлежит Государственному музею изобразительных искусств имени А. С. Пушкина. Этот свиток длиной 5,44 м и шириной 8 см включает 25 задач. И наконец, "Кожаный свиток египетской математики", с большим трудом расправлённый в 1927 г. и во многом проливший свет на арифметические знания египтян. Ныне он хранится в Британском музее. Подобные папирусы, по-видимому, служили своего рода учебниками. В папирусах есть задачи на вычисление - образцы выполнения арифметических операций, задачи на раздел имущества, на нахождение объёма амбара или корзины, площади поля и т. д. Все правила счёта древних египтян основывались на умении складывать и вычитать, удваивать числа и дополнять дроби до единицы. Умножение и деление сводили к сложению при помощи особой операции - многократного удвоения или раздвоения чисел. Выглядели такие расчёты довольно громоздко. Для дробей были специальные обозначения. Египтяне использовали дроби вида 1/n, где n - натуральное число. Такие дроби называются аликвотными. Иногда вместо деления m:n производили умножение m*(1/n). Надо сказать, что действия с дробями составляли особенность египетской арифметики, в которой самые простые вычисления порой превращались в сложные задачи. Сравнительно небольшой круг задач в египетских папирусах сводится к решению простейших уравнений с одним неизвестным. При решении подобных задач для неизвестного использовали специальный иероглиф со значением "куча". В задачах про "кучу", решаемых единым методом, можно усмотреть зачатки алгебры как науки об уравнениях. В египетских папирусах встречаются также задачи на арифметическую и геометрическую прогрессии, что ещё раз подчёркивает не только практический, но и теоретический характер древней математики. Поразительно, но при довольно примитивной и громоздкой арифметике египтяне смогли добиться значительных успехов в геометрии. Они умели точно находить площадь поля прямоугольной, треугольной и трапециевидной формы. Известно, что в середине І тысячелетия до н. э. для построения прямого угла египтяне использовали верёвку, разделённую узлами на 12 равных частей. Концы верёвки связывали и затем натягивали её на 3 колышка. Если стороны относились как 3:4:5, то получался прямоугольный треугольник. И это - единственный прямоугольный треугольник, который знали в Древнем Египте. Важным достижением геометрической науки египтян было очень хорошее приближение числа π, которое получается из формулы для площади круга диаметра d. Этому правилу из 50-ой задачи папируса Райанда соответствует значение π»3,1605. Однако каким образом египтяне получили саму формулу, из контекста неясно. Заметим, что на всём Древнем Востоке при вычислениях использовалось значение π=3. Так что в этом отношении египтяне намного опередили другие народы. Среди пространственных тел самым "египетским" можно считать пирамиду, ведь именно такую форму имеют знаменитые усыпальницы фараонов. Так вот, оказывается, кроме объёма куба, параллелепипеда, призмы и цилиндра египтяне умели вычислять объём усечённой пирамиды, в основаниях которой лежат квадраты со сторонами a и b, а высота h. Для этого они применяли специальную формулу. Эта формула считается высшим достижением древнеегипетской математики. Математика в Древнем Египте представляла собой совокупность знаний, между которыми ещё не существовало чётких границ. Это были правила для решения конкретных задач, имевших практическое значение. И лишь постепенно, очень и очень медленно, задачи начали обобщаться и приобретать более абстрактные черты. Как могло появиться первое приближение числа π По поводу формулы площади круга нам кажется весьма правдоподобной гипотеза автора многочисленных книг по истории математика А.Е. Раик: площадь круга диаметра d сравнивается с площадью описанного вокруг него квадрата, из которого по очереди удаляются малые квадраты со сторонами (1/6)d и (1/9)d. В наших обозначениях вычисления будут выглядеть так. В первом приближении площади круга S равна разности между площадью квадрата со стороной d и суммарной площадью 4-ёх малых квадратов А со стороной (1/6)d: S»d2-4(1/6*d)2=d2(1-1/9)=(8/9)d2 Далее из полученной площади нужно вычесть площадь 8-ми квадратов В со стороной (1/9)d, и тогда площадь круга будет приближённо равна следующему выражению: S»(1-1/9)d2-8(1/9*d)2=(1-1/9)d2-1/9*(8/9)d2=(1-1/9)d2-1/9(1-1/9)d2=(1-1/9)2d2

baza-referat.ru

Математика Древнего Египта

МАТЕМАТИКА ДРЕВНЕГО ЕГИПТА Бурдун Вячеслав г. Луганск ССФМШ №1 6-а класс 11 лет

Математика Древнего Египта Мы начнем наше исследование гораздо раньше указанных дат в описании проекта. Ведь успехи античных математиков (в том числе и Фалеса) не могли возникнуть на пустом месте. Народы Древнего востока на протяжении многих веков сделали немало открытий в арифметике, геометрии и астрономии. Самые ранние математические тексты, известные в наши дни, оставили две великие цивилизации древности - Египет и Месопотамия. Именно там появились первые математические задачи, решения которых требовала повседневная жизнь. Уровень древнеегипетской математики был довольно высок. Источников, по которым можно судить об уровне математических знаний древних египтян, совсем немного. Во-первых, это папирус Райнда, названный так по имени своего первого владельца. Он был найден в 1858 г., расшифрован и издан в 1870 г. Рукопись представляла собой узкую (33 см) и длинную (5,25 м) полосу папируса, содержащую 84 задачи. Теперь одна часть папируса хранится в Британском музее в Лондоне, а другая находится в Нью-Йорке. Во-вторых, так называемый Московский папирус - его в декабре 1888 г. приобрёл в Луксоре русский Египтолог Владимир Семёнович Голенищев. Сейчас папирус принадлежит Государственному музею изобразительных искусств имени А. С. Пушкина. Этот свиток длиной 5,44 м и шириной 8 см включает 25 задач. И наконец, "Кожаный свиток египетской математики", с большим трудом расправлённый в 1927 г. и во многом проливший свет на арифметические знания египтян. Ныне он хранится в Британском музее. Подобные папирусы, по-видимому, служили своего рода учебниками. В папирусах есть задачи на вычисление - образцы выполнения арифметических операций, задачи на раздел имущества, на нахождение объёма амбара или корзины, площади поля и т. д. Все правила счёта древних египтян основывались на умении складывать и вычитать, удваивать числа и дополнять дроби до единицы. Умножение и деление сводили к сложению при помощи особой операции - многократного удвоения или раздвоения чисел. Выглядели такие расчёты довольно громоздко. Для дробей были специальные обозначения. Египтяне использовали дроби вида 1/n, где n - натуральное число. Такие дроби называются аликвотными. Иногда вместо деления m:n производили умножение m*(1/n). Надо сказать, что действия с дробями составляли особенность египетской арифметики, в которой самые простые вычисления порой превращались в сложные задачи. Сравнительно небольшой круг задач в египетских папирусах сводится к решению простейших уравнений с одним неизвестным. При решении подобных задач для неизвестного использовали специальный иероглиф со значением "куча". В задачах про "кучу", решаемых единым методом, можно усмотреть зачатки алгебры как науки об уравнениях. В египетских папирусах встречаются также задачи на арифметическую и геометрическую прогрессии, что ещё раз подчёркивает не только практический, но и теоретический характер древней математики. Поразительно, но при довольно примитивной и громоздкой арифметике египтяне смогли добиться значительных успехов в геометрии. Они умели точно находить площадь поля прямоугольной, треугольной и трапециевидной формы. Известно, что в середине І тысячелетия до н. э. для построения прямого угла египтяне использовали верёвку, разделённую узлами на 12 равных частей. Концы верёвки связывали и затем натягивали её на 3 колышка. Если стороны относились как 3:4:5, то получался прямоугольный треугольник. И это - единственный прямоугольный треугольник, который знали в Древнем Египте. Важным достижением геометрической науки египтян было очень хорошее приближение числа π, которое получается из формулы для площади круга диаметра d. Этому правилу из 50-ой задачи папируса Райанда соответствует значение π»3,1605. Однако каким образом египтяне получили саму формулу, из контекста неясно. Заметим, что на всём Древнем Востоке при вычислениях использовалось значение π=3. Так что в этом отношении египтяне намного опередили другие народы. Среди пространственных тел самым "египетским" можно считать пирамиду, ведь именно такую форму имеют знаменитые усыпальницы фараонов. Так вот, оказывается, кроме объёма куба, параллелепипеда, призмы и цилиндра египтяне умели вычислять объём усечённой пирамиды, в основаниях которой лежат квадраты со сторонами a и b, а высота h. Для этого они применяли специальную формулу. Эта формула считается высшим достижением древнеегипетской математики. Математика в Древнем Египте представляла собой совокупность знаний, между которыми ещё не существовало чётких границ. Это были правила для решения конкретных задач, имевших практическое значение. И лишь постепенно, очень и очень медленно, задачи начали обобщаться и приобретать более абстрактные черты. Как могло появиться первое приближение числа π По поводу формулы площади круга нам кажется весьма правдоподобной гипотеза автора многочисленных книг по истории математика А.Е. Раик: площадь круга диаметра d сравнивается с площадью описанного вокруг него квадрата, из которого по очереди удаляются малые квадраты со сторонами (1/6)d и (1/9)d. В наших обозначениях вычисления будут выглядеть так. В первом приближении площади круга S равна разности между площадью квадрата со стороной d и суммарной площадью 4-ёх малых квадратов А со стороной (1/6)d: S»d2-4(1/6*d)2=d2(1-1/9)=(8/9)d2 Далее из полученной площади нужно вычесть площадь 8-ми квадратов В со стороной (1/9)d, и тогда площадь круга будет приближённо равна следующему выражению: S»(1-1/9)d2-8(1/9*d)2=(1-1/9)d2-1/9*(8/9)d2=(1-1/9)d2-1/9(1-1/9)d2=(1-1/9)2d2

www.coolreferat.com

Математика в Древнем Египте — Википедия

Данная статья — часть обзора История математики.

Статья посвящена состоянию и развитию математики в Древнем Египте в период примерно с XXX по III век до н. э.

Древнейшие древнеегипетские математические тексты относятся к началу II тысячелетия до н. э. Математика тогда использовалась в астрономии, мореплавании, землемерии, при строительстве зданий, плотин, каналов и военных укреплений. Денежных расчётов, как и самих денег, в Египте не было. Египтяне писали на папирусе, который сохраняется плохо, и поэтому наши знания о математике Египта существенно меньше, чем о математике Вавилона или Греции. Вероятно, она была развита лучше, чем можно представить, исходя из дошедших до нас документов — известно[1], что греческие математики учились у египтян[2].

Нам ничего не известно о развитии математических знаний в Египте как в более древние, так и в более поздние времена. После воцарения Птолемеев начинается чрезвычайно плодотворный синтез египетской и греческой культур.

Содержание

  Часть папируса Ахмеса.Задачи с 49 по 55.

Основные сохранившиеся источники относятся к периоду Среднего царства, времени расцвета древнеегипетской культуры:

От Нового царства до нас дошли несколько фрагментов вычислительного характера.

Авторы всех этих текстов нам неизвестны. Дошедшие до нас экземпляры — это в основном копии, переписанные в период гиксосов. Носители научных знаний тогда именовались писцами и фактически были государственными или храмовыми чиновниками.

Все задачи из папируса Ахмеса (записан ок. 1650 года до н. э.) имеют прикладной характер и связаны с практикой строительства, размежеванием земельных наделов и т. п. Задачи сгруппированы не по методам, а по тематике. По преимуществу это задачи на нахождение площадей треугольника, четырёхугольников и круга, разнообразные действия с целыми числами и аликвотными дробями, пропорциональное деление, нахождение отношений, возведение в разные степени, определение среднего арифметического, арифметические прогрессии, решение уравнений первой и второй степени с одним неизвестным[3].

Полностью отсутствуют какие бы то ни было объяснения или доказательства. Искомый результат либо даётся прямо, либо приводится краткий алгоритм его вычисления.

Такой способ изложения, типичный для науки стран древнего Востока, наводит на мысль о том, что математика там развивалась путём индуктивных обобщений и гениальных догадок, не образующих никакой общей теории. Тем не менее, в папирусе есть целый ряд свидетельств того, что математика в Древнем Египте тех лет имела или, по крайней мере, начинала приобретать теоретический характер. Так, египетские математики умели извлекать корни (целочисленные) и возводить в степень[4], решать уравнения, были знакомы с арифметической и геометрической прогрессией и даже владели зачатками алгебры: при решении уравнений специальный иероглиф «куча» обозначал неизвестное.

Нумерация (запись чисел)Править

  Иероглифическая запись числа 35736

Древнеегипетская нумерация, то есть запись чисел, была похожа на римскую: поначалу были отдельные значки для 1, 10, 100, … 10 000 000, сочетавшиеся аддитивно (складываясь). Египтяне писали справа налево, и младшие разряды числа записывались первыми, так что в конечном счёте порядок цифр соответствовал нашему. В иератическом письме уже есть отдельные обозначения для цифр 1-9 и сокращённые значки для разных десятков, сотен и тысяч.

Любое число в Древнем Египте можно было записать двумя способами: словами и цифрами. Например, чтобы написать число 30, можно было использовать обычные иероглифы:

или то же самое написать цифрами (три символа десятки):

  Плита с гробницы принцессы Неферетиабет (2590—2565 до н. э., Гиза). Лувр

Умножение египтяне производили с помощью сочетания удвоений и сложений. Деление заключалось в подборе делителя, то есть как действие, обратное умножению.

Особые значки обозначали дроби вида 1n{\displaystyle {\frac {1}{n}}}  и 23{\displaystyle {\frac {2}{3}}} . Однако общего понятия дроби mn{\displaystyle {\frac {m}{n}}}  у них не было, и все неканонические дроби представлялись как сумма аликвотных дробей. Типовые разложения были сведены в громоздкие таблицы.

Пример записи дробей из Папируса Ринда[5]

5 + 1⁄2 + 1⁄7 + 1⁄14 (= 5 5⁄7)

Знаки сложения и вычитанияПравить

Чтобы показать знаки сложения или вычитания использовался иероглиф

 
или
 

Если направление ног у этого иероглифа совпадало с направлением письма, тогда он означал «сложение», в других случаях он означал «вычитание».[6]

СложениеПравить

Если при сложении получается число большее десяти, тогда десяток записывается повышающим иероглифом.

Например: 2343 + 1671

+

Собираем все однотипные иероглифы вместе и получаем:

Преобразуем:

Окончательный результат выглядит вот так:

УмножениеПравить

Древнеегипетское умножение является последовательным методом умножения двух чисел. Чтобы умножать числа, им не нужно было знать таблицы умножения, а достаточно было только уметь раскладывать числа на кратные основания, умножать эти кратные числа и складывать.

Египетский метод предполагает раскладывание наименьшего из двух множителей на кратные числа и последующее их последовательное переумножение на второй множитель

Этот метод можно и сегодня встретить в очень отдаленных регионах.

РазложениеПравить

Египтяне использовали систему разложения наименьшего множителя на кратные числа, сумма которых составляла бы исходное число.

Чтобы правильно подобрать кратное число, нужно было знать следующую таблицу значений:

1 x 2 = 22 x 2 = 44 x 2 = 88 x 2 = 1616 x 2 = 32

Пример разложения числа 25:

  • Кратный множитель для числа «25» — это 16.
  • 25 — 16 = 9,
  • Кратный множитель для числа «9» — это 8,
  • 9 — 8 = 1,
  • Кратный множитель для числа «1» — это 1,
  • 1 — 1 = 0

Таким образом «25» — это сумма трех слагаемых: 16, 8 и 1.

Пример: умножим «13» на «238»:

1 х 238 = 238
4 х 238 = 952
8 х 238 = 1904
13 х 238 = 3094

Известно, что 13 = 8 + 4 + 1. Каждое из этих слагаемых нужно умножить на 238. Получаем: 13 × 238 = (8 + 4 + 1) × 238 = 8 x 238 + 4 × 238 + 1 × 238 = 3094.

УравненияПравить

  Иероглифическая запись уравнения x(23+12+17+1)=37{\displaystyle x\left({\frac {2}{3}}+{\frac {1}{2}}+{\frac {1}{7}}+1\right)=37} 

Пример задачи из папируса Ахмеса:

Найти число, если известно, что от прибавления к нему 2/3 его и вычитания из результата его трети получается 10.

Вычисление площадейПравить

В области геометрии египтяне знали точные формулы для площади прямоугольника, треугольника и трапеции. Площадь произвольного четырёхугольника со сторонами a, b, c, d вычислялась приближённо как S=a+c2⋅b+d2{\displaystyle S={\frac {a+c}{2}}\cdot {\frac {b+d}{2}}} ; эта грубая формула даёт приемлемую точность, если фигура близка к прямоугольнику.

Египтяне предполагали, что площадь круга S диаметром d равна площади квадрата, сторона которого составляет 8/9 диаметра: S=(d−d9)2=(89d)2.{\displaystyle S=\left(d-{\frac {d}{9}}\right)^{2}=\left({\frac {8}{9}}d\right)^{2}.}  Это правило соответствует приближению π≈4⋅(89)2{\displaystyle \pi \approx 4\cdot \left({\frac {8}{9}}\right)^{2}}  ≈ 3,1605 (погрешность менее 1 %)[7]..

Некоторые исследователи[8] на основании 10-й задачи Московского математического папируса считали, что египтяне знали точную формулу для вычисления площади сферы, однако другие учёные с этим не согласны[9][10].

Вычисление объёмовПравить

  Реконструкция водяных часов по чертежам из Оксиринха

Египтяне могли высчитывать объёмы параллелепипеда, цилиндра, конуса и пирамид. Для вычисление объёма усечённой пирамиды египтяне пользовались следующим правилом: пусть мы имеем правильную усечённую пирамиду со стороной нижнего основания a, верхнего b и высотой h; тогда объём вычислялся по следующей (правильной) формуле: V=(a2+ab+b2)⋅h4.{\displaystyle V=(a^{2}+ab+b^{2})\cdot {\frac {h}{3}}.} 

Древний свиток папируса, найденный в Оксиринхе, свидетельствует, что египтяне могли вычислять также объём усечённого конуса. Эти знания ими использовались для сооружения водяных часов. Так, например, известно, что при Аменхотепе III были построены водяные часы в Карнаке[источник не указан 1181 день].

Египетский треугольникПравить

Египетским треугольником называется прямоугольный треугольник с соотношением сторон 3:4:5. Плутарх в первом веке об этом треугольнике в сочинении «Об Исиде и Осирисе» писал: «видимо, египтяне сравнивают природу Всеобщности с красивейшим из треугольников». Возможно, именно из-за этого этот треугольник получил название египетского[11]. Действительно, греческие учёные сообщали, что в Египте для построения прямого угла использовалась верёвка, разделённая на 12 частей.

Египетский треугольник активно применялся для построения прямых углов египетскими землемерами и архитекторами, например, при построении пирамид. Историк Ван дер Варден попытался поставить этот факт под сомнение, однако более поздние исследования его подтвердили[12]. В любом случае, нет никаких свидетельств, что в Древнем Египте была известна теорема Пифагора в общем случае (в отличие от Древнего Вавилона)[13].

  1. ↑ Ван дер Варден Б. Л. Пробуждающаяся наука. Математика древнего Египта, Вавилона и Греции. Указ. соч., стр. 125: «Фалес путешествовал в Египет и привёз геометрию в Элладу» (из комментария Прокла к Евклиду).
  2. ↑ «Согласно большинству мнений, геометрия была впервые открыта в Египте, и возникла при измерении площадей» // Proclus Diadochus. In primum Euclidis Elementorum commentarii. — Leipzig, 1873. — С. 64.
  3. ↑ История математики, том I, 1970, с. 21—33..
  4. ↑ История математики, том I, 1970, с. 24..
  5. ↑ Gardiner Alan H. Egyptian grammar: being an introduction to the study of hieroglyphs 3rd ed., rev. London: 1957, p. 197.
  6. ↑ Cajori, Florian. A History of Mathematical Notations. — Dover Publications, 1993. — P. pp. 229–230. — ISBN 0486677664.
  7. ↑ История математики, том I, 1970, с. 30—32..
  8. ↑ W. W. Struve. Mathematischer Papyrus des Museum in Moskau. — Quellen und Studien zur Geschichte der Mathematik, Astronomie und Physik, Abteilung A. — Berlin: Springer, 1930. — С. 157.
  9. ↑ История математики, том I, 1970, с. 31—32..
  10. ↑ Ван дер Варден Б. Л. Пробуждающаяся наука. Математика древнего Египта, Вавилона и Греции, стр. 44-45
  11. ↑ Прасолов В. В. Глава 1. Древний Египет и Вавилон // История математики. — (не публиковалась), 2013. — С. 5.
  12. ↑ Ван дер Варден Б. Л. Пробуждающаяся наука. Математика древнего Египта, Вавилона и Греции. М.: Физматлит, 1959, С. 13, подстрочное примечание
  13. ↑ История математики, том I, 1970, с. 31..
  • Ван дер Варден. Пробуждающаяся наука. Математика древнего Египта, Вавилона и Греции. — М.: Наука, 1959. — 456 с.
  • Веселовский И. Н. Египетская наука и Греция. Труды ИИЕ, 2, 1948, с. 426—498.
  • Выгодский М. Я. Арифметика и алгебра в древнем мире. — М.: Наука, 1967.
  • Депман И. Я. История арифметики. Пособие для учителей. — Изд. второе. — М.: Просвещение, 1965. — 416 с.
  • История математики. С древнейших времен до начала Нового времени // История математики / Под редакцией А. П. Юшкевича, в трёх томах. — М.: Наука, 1970. — Т. I.
  • Нейгебауер О. Лекции по истории античных математических наук. — Москва-Ленинград, 1937.
  • Раик А. Е. Две лекции о египетской и вавилонской математике // Историко-математические исследования. — М.: Физматгиз, 1959. — № 12. — С. 271-320.
  • Раик А. Е. Очерки по истории математики в древности. Саранск: Мордовское гос. изд-во, 1977.
  • Gillings R. J. Mathematics in the time of the pharaohs. Cambridge: MIT Press, 1972.
  • Rossi C. Architecture and mathematics in Ancient Egypt. Cambridge (UK): Cambridge UP, 2004.
  • Vogel K. Vorgriechische Mathematik I, Vorgeschichte und Ägypten. Hannover: Schrödel, 1958.

ru.mobile.bywiki.com

Математика в Древнем Египте — Википедия

Данная статья — часть обзора История математики.

Статья посвящена состоянию и развитию математики в Древнем Египте в период примерно с XXX по III век до н. э.

Древнейшие древнеегипетские математические тексты относятся к началу II тысячелетия до н. э. Математика тогда использовалась в астрономии, мореплавании, землемерии, при строительстве зданий, плотин, каналов и военных укреплений. Денежных расчётов, как и самих денег, в Египте не было. Египтяне писали на папирусе, который сохраняется плохо, и поэтому наши знания о математике Египта существенно меньше, чем о математике Вавилона или Греции. Вероятно, она была развита лучше, чем можно представить, исходя из дошедших до нас документов — известно[1], что греческие математики учились у египтян[2].

Нам ничего не известно о развитии математических знаний в Египте как в более древние, так и в более поздние времена. После воцарения Птолемеев начинается чрезвычайно плодотворный синтез египетской и греческой культур.

Часть папируса Ахмеса.Задачи с 49 по 55.

Основные сохранившиеся источники относятся к периоду Среднего царства, времени расцвета древнеегипетской культуры:

От Нового царства до нас дошли несколько фрагментов вычислительного характера.

Авторы всех этих текстов нам неизвестны. Дошедшие до нас экземпляры — это в основном копии, переписанные в период гиксосов. Носители научных знаний тогда именовались писцами и фактически были государственными или храмовыми чиновниками.

Все задачи из папируса Ахмеса (записан ок. 1650 года до н. э.) имеют прикладной характер и связаны с практикой строительства, размежеванием земельных наделов и т. п. Задачи сгруппированы не по методам, а по тематике. По преимуществу это задачи на нахождение площадей треугольника, четырёхугольников и круга, разнообразные действия с целыми числами и аликвотными дробями, пропорциональное деление, нахождение отношений, возведение в разные степени, определение среднего арифметического, арифметические прогрессии, решение уравнений первой и второй степени с одним неизвестным[3].

Полностью отсутствуют какие бы то ни было объяснения или доказательства. Искомый результат либо даётся прямо, либо приводится краткий алгоритм его вычисления.

Такой способ изложения, типичный для науки стран древнего Востока, наводит на мысль о том, что математика там развивалась путём индуктивных обобщений и гениальных догадок, не образующих никакой общей теории. Тем не менее, в папирусе есть целый ряд свидетельств того, что математика в Древнем Египте тех лет имела или, по крайней мере, начинала приобретать теоретический характер. Так, египетские математики умели извлекать корни (целочисленные) и возводить в степень[4], решать уравнения, были знакомы с арифметической и геометрической прогрессией и даже владели зачатками алгебры: при решении уравнений специальный иероглиф «куча» обозначал неизвестное.

Иероглифическая запись числа 35736

Древнеегипетская нумерация, то есть запись чисел, была похожа на римскую: поначалу были отдельные значки для 1, 10, 100, … 10 000 000, сочетавшиеся аддитивно (складываясь). Египтяне писали справа налево, и младшие разряды числа записывались первыми, так что в конечном счёте порядок цифр соответствовал нашему. В иератическом письме уже есть отдельные обозначения для цифр 1-9 и сокращённые значки для разных десятков, сотен и тысяч.

Любое число в Древнем Египте можно было записать двумя способами: словами и цифрами. Например, чтобы написать число 30, можно было использовать обычные иероглифы:

или то же самое написать цифрами (три символа десятки):

Плита с гробницы принцессы Неферетиабет (2590—2565 до н. э., Гиза). Лувр

Умножение египтяне производили с помощью сочетания удвоений и сложений. Деление заключалось в подборе делителя, то есть как действие, обратное умножению.

Особые значки обозначали дроби вида 1n{\displaystyle {\frac {1}{n}}} и 23{\displaystyle {\frac {2}{3}}}. Однако общего понятия дроби mn{\displaystyle {\frac {m}{n}}} у них не было, и все неканонические дроби представлялись как сумма аликвотных дробей. Типовые разложения были сведены в громоздкие таблицы.

Пример записи дробей из Папируса Ринда[5]

5 + 1⁄2 + 1⁄7 + 1⁄14 (= 5 5⁄7)

Знаки сложения и вычитания[править | править код]

Чтобы показать знаки сложения или вычитания использовался иероглиф

или

Если направление ног у этого иероглифа совпадало с направлением письма, тогда он означал «сложение», в других случаях он означал «вычитание».[6]

Сложение[править | править код]

Если при сложении получается число большее десяти, тогда десяток записывается повышающим иероглифом.

Например: 2343 + 1671

+

Собираем все однотипные иероглифы вместе и получаем:

Преобразуем:

Окончательный результат выглядит вот так:

Умножение[править | править код]

Древнеегипетское умножение является последовательным методом умножения двух чисел. Чтобы умножать числа, им не нужно было знать таблицы умножения, а достаточно было только уметь раскладывать числа на кратные основания, умножать эти кратные числа и складывать.

Египетский метод предполагает раскладывание наименьшего из двух множителей на кратные числа и последующее их последовательное переумножение на второй множитель

Этот метод можно и сегодня встретить в очень отдаленных регионах.

Разложение[править | править код]

Египтяне использовали систему разложения наименьшего множителя на кратные числа, сумма которых составляла бы исходное число.

Чтобы правильно подобрать кратное число, нужно было знать следующую таблицу значений:

1 x 2 = 22 x 2 = 44 x 2 = 88 x 2 = 1616 x 2 = 32

Пример разложения числа 25:

  • Кратный множитель для числа «25» — это 16.
  • 25 — 16 = 9,
  • Кратный множитель для числа «9» — это 8,
  • 9 — 8 = 1,
  • Кратный множитель для числа «1» — это 1,
  • 1 — 1 = 0

Таким образом «25» — это сумма трех слагаемых: 16, 8 и 1.

Пример: умножим «13» на «238»:

1 х 238 = 238
4 х 238 = 952
8 х 238 = 1904
13 х 238 = 3094

Известно, что 13 = 8 + 4 + 1. Каждое из этих слагаемых нужно умножить на 238. Получаем: 13 × 238 = (8 + 4 + 1) × 238 = 8 x 238 + 4 × 238 + 1 × 238 = 3094.

Уравнения[править | править код]

Иероглифическая запись уравнения x(23+12+17+1)=37{\displaystyle x\left({\frac {2}{3}}+{\frac {1}{2}}+{\frac {1}{7}}+1\right)=37}

Пример задачи из папируса Ахмеса:

Найти число, если известно, что от прибавления к нему 2/3 его и вычитания из результата его трети получается 10.

Вычисление площадей[править | править код]

В области геометрии египтяне знали точные формулы для площади прямоугольника, треугольника и трапеции. Площадь произвольного четырёхугольника со сторонами a, b, c, d вычислялась приближённо как S=a+c2⋅b+d2{\displaystyle S={\frac {a+c}{2}}\cdot {\frac {b+d}{2}}}; эта грубая формула даёт приемлемую точность, если фигура близка к прямоугольнику.

Египтяне предполагали, что площадь круга S диаметром d равна площади квадрата, сторона которого составляет 8/9 диаметра: S=(d−d9)2=(89d)2.{\displaystyle S=\left(d-{\frac {d}{9}}\right)^{2}=\left({\frac {8}{9}}d\right)^{2}.} Это правило соответствует приближению π≈4⋅(89)2{\displaystyle \pi \approx 4\cdot \left({\frac {8}{9}}\right)^{2}} ≈ 3,1605 (погрешность менее 1 %)[7]..

Некоторые исследователи[8] на основании 10-й задачи Московского математического папируса считали, что египтяне знали точную формулу для вычисления площади сферы, однако другие учёные с этим не согласны[9][10].

Вычисление объёмов[править | править код]

Реконструкция водяных часов по чертежам из Оксиринха

Египтяне могли высчитывать объёмы параллелепипеда, цилиндра, конуса и пирамид. Для вычисление объёма усечённой пирамиды египтяне пользовались следующим правилом: пусть мы имеем правильную усечённую пирамиду со стороной нижнего основания a, верхнего b и высотой h; тогда объём вычислялся по следующей (правильной) формуле: V=(a2+ab+b2)⋅h4.{\displaystyle V=(a^{2}+ab+b^{2})\cdot {\frac {h}{3}}.}

Древний свиток папируса, найденный в Оксиринхе, свидетельствует, что египтяне могли вычислять также объём усечённого конуса. Эти знания ими использовались для сооружения водяных часов. Так, например, известно, что при Аменхотепе III были построены водяные часы в Карнаке[источник не указан 1181 день].

Египетский треугольник[править | править код]

Египетским треугольником называется прямоугольный треугольник с соотношением сторон 3:4:5. Плутарх в первом веке об этом треугольнике в сочинении «Об Исиде и Осирисе» писал: «видимо, египтяне сравнивают природу Всеобщности с красивейшим из треугольников». Возможно, именно из-за этого этот треугольник получил название египетского[11]. Действительно, греческие учёные сообщали, что в Египте для построения прямого угла использовалась верёвка, разделённая на 12 частей.

Египетский треугольник активно применялся для построения прямых углов египетскими землемерами и архитекторами, например, при построении пирамид. Историк Ван дер Варден попытался поставить этот факт под сомнение, однако более поздние исследования его подтвердили[12]. В любом случае, нет никаких свидетельств, что в Древнем Египте была известна теорема Пифагора в общем случае (в отличие от Древнего Вавилона)[13].

  1. ↑ Ван дер Варден Б. Л. Пробуждающаяся наука. Математика древнего Египта, Вавилона и Греции. Указ. соч., стр. 125: «Фалес путешествовал в Египет и привёз геометрию в Элладу» (из комментария Прокла к Евклиду).
  2. ↑ «Согласно большинству мнений, геометрия была впервые открыта в Египте, и возникла при измерении площадей» // Proclus Diadochus. In primum Euclidis Elementorum commentarii. — Leipzig, 1873. — С. 64.
  3. ↑ История математики, том I, 1970, с. 21—33..
  4. ↑ История математики, том I, 1970, с. 24..
  5. ↑ Gardiner Alan H. Egyptian grammar: being an introduction to the study of hieroglyphs 3rd ed., rev. London: 1957, p. 197.
  6. ↑ Cajori, Florian. A History of Mathematical Notations. — Dover Publications, 1993. — P. pp. 229–230. — ISBN 0486677664.
  7. ↑ История математики, том I, 1970, с. 30—32..
  8. ↑ W. W. Struve. Mathematischer Papyrus des Museum in Moskau. — Quellen und Studien zur Geschichte der Mathematik, Astronomie und Physik, Abteilung A. — Berlin: Springer, 1930. — С. 157.
  9. ↑ История математики, том I, 1970, с. 31—32..
  10. ↑ Ван дер Варден Б. Л. Пробуждающаяся наука. Математика древнего Египта, Вавилона и Греции, стр. 44-45
  11. ↑ Прасолов В. В. Глава 1. Древний Египет и Вавилон // История математики. — (не публиковалась), 2013. — С. 5.
  12. ↑ Ван дер Варден Б. Л. Пробуждающаяся наука. Математика древнего Египта, Вавилона и Греции. М.: Физматлит, 1959, С. 13, подстрочное примечание
  13. ↑ История математики, том I, 1970, с. 31..
  • Ван дер Варден. Пробуждающаяся наука. Математика древнего Египта, Вавилона и Греции. — М.: Наука, 1959. — 456 с.
  • Веселовский И. Н. Египетская наука и Греция. Труды ИИЕ, 2, 1948, с. 426—498.
  • Выгодский М. Я. Арифметика и алгебра в древнем мире. — М.: Наука, 1967.
  • Депман И. Я. История арифметики. Пособие для учителей. — Изд. второе. — М.: Просвещение, 1965. — 416 с.
  • История математики. С древнейших времен до начала Нового времени // История математики / Под редакцией А. П. Юшкевича, в трёх томах. — М.: Наука, 1970. — Т. I.
  • Нейгебауер О. Лекции по истории античных математических наук. — Москва-Ленинград, 1937.
  • Раик А. Е. Две лекции о египетской и вавилонской математике // Историко-математические исследования. — М.: Физматгиз, 1959. — № 12. — С. 271-320.
  • Раик А. Е. Очерки по истории математики в древности. Саранск: Мордовское гос. изд-во, 1977.
  • Gillings R. J. Mathematics in the time of the pharaohs. Cambridge: MIT Press, 1972.
  • Rossi C. Architecture and mathematics in Ancient Egypt. Cambridge (UK): Cambridge UP, 2004.
  • Vogel K. Vorgriechische Mathematik I, Vorgeschichte und Ägypten. Hannover: Schrödel, 1958.

ru.wikiyy.com